Асинхронному двигателю соответствует механическая характеристика
Механическая характеристика асинхронного двигателя, её анализ.
Устройство и применение АД с к.з. ротором.
1) Неподвижный статор: сердечник из шихтованной электротехнической стали с (как правило) тремя фазными обмотками, образующими полюса, и сдвинутыми в пространстве на 120 град.
Обмотка статора обычно выполняется с изоляцией лаком.
2) Подвижный короткозамкнутый ротор: сердечник по типу статорного. Обмотка в пазах – медные или алюминиевые стержни , закороченные кольцами по торцам сердечника.
Обмотка ротора в некоторых маломощных двигателях выполняется путем отливки под давлением из алюминия .
В маломощных АД воздушный зазор между статором и ротором составляет 0,2 – 0,3 мм, в двигателях большой мощности – несколько миллиметров.
Обмотка фазного ротора асинхронной машины | Звезда или треугольник | Первая фаза Вторая фаза Третья фаза | Р1 Р2 РЗ |
Звезда | Первая фаза Вторая фаза Третья фаза Нулевая точка | Р1 Р2 РЗ 0 |
Обмотка статора. Открытая схе- | Первая фаза | U1 | U2 |
ма | Вторая фаза | VI | V2 |
Третья фаза | W1 | W2 |
Обмотка фазного ротора асин- | Первая фаза | К1 | К2 |
хронного двигателя, открытая | Вторая фаза | L1 | L2 |
схема | Третья фаза | Ml | М2 |
13. Работа АД в режиме торможения противовключением.
Необходимо перевести схему в реверс и отключить ее при скорости равной нулю. Контроль скорости осуществляется реле скорости.
Способы регулирования частоты вращения асинхронного двигателя.
Для асинхронных двигателей с к.з. ротором
1.Изменением сопротивления в цепи статора, применяется в лифтах, недостатки: падает перегрузочная способность и пусковой момент
2. Изменением напряжения и частоты одновременно: с помощью частотного преобразователя напряжения, способ лучший по регулируемости, требует дорогостоящее оборудование
3 Изменением только величины напряжения: результат такой же, как в первом случае.
4. Переключением с треугольника на звезду (изменением числа пар полюсов)
Для двигателя с фазным ротором: с помощью переключения числа ступеней в реостате в цепи ротора.
Пуск АД с фазным ротором.
Включение в ротор пуско-регулировочных реостатов позволяет ступенчато разогнать двигатель без превышения пускового тока больше 2-3 номинальных.
График –три ступени
Механическая характеристика асинхронного двигателя, её анализ.
1-х.х 2- номинальный режим 3- перегрузочная способность 4 – пуск
1.Механические характеристики строятся по 4 точкам :
1)
2)
3)
4)
где: – синхронная скорость;
– номинальная скорость;
– скольжение критическое
ƛ — перегрузочная способность двигателя;
— момент номинальный;
— частота вращения номинальная;
17. Принцип действия асинхронного двигателя.
На три фазы статорной (первичной) обмотки АД подается переменное напряжение ua=Umsin(wt), ub=Umsin(wt-p/3); uc=Umsin(wt-2p/3), где w=2πf1.
В обмотках начинают протекать фазные токи, также сдвинутыми относительно друг друга на 120 эл.градусов.
Возникает магнитное поле статора, вращающееся с угловой скоростью Ω0=2πf1/p.
Магнитное поле статора пересекает проводники обмотки ротора (вторичной обмотки) и индуцирует в ней ЭДС:
Направление E2 определяется по правилу правой руки. Наведенная ЭДС создает в замкнутой обмотке токи .
Индуктивное сопротивление (индуктивность) стержней ротора мало, ток практически совпадает по фазе с ЭДС .
В результате взаимодействия токов ротора с магнитным потоком возникают действующие на проводники ротора механические силы, направление которых определяется по правилу левой руки, и вращающий электромагнитный момент.
При этом для создания момента необходимо, чтобы поток статора пересекал бы проводники ротора, т . е , чтобы статорное поле вращалось со скоростью выше частоты вращения ротора. Эта разница в скорости вращения называется скольжением.
Таким образом, отличительной особенностью АД, давшей ему название, является то, что поле статора и ротор вращаются с разными скоростями, т.е. не синхронно или асинхронно.
Если поменять направление вращения поля статора , то ротор то же начнет вращаться в другую сторону – это реверсирование. Схемно для этого достаточно поменять местами две фазы любые.
18.Способы пуска асинхронных двигателей с к.з. ротором и их характеристика
Во всех способах достигается уменьшение пускового тока..Допускается прямой пуск, если мощность двигателя небольшая или двигатель запускается без нагрузки.
1.Изменением сопротивления в цепи статора, применяется в лифтах, недостатки: падает перегрузочная способность и пусковой момент
2. Изменением напряжения и частоты одновременно: с помощью частотного преобразователя напряжения, способ лучший по регулируемости, требует дорогостоящее оборудование
3 Изменением только величины напряжения: результат такой же, как в первом случае.
4. Переключением с треугольника на звезду (изменением числа пар полюсов)
Применение асинхронных электродвигателей в промышленности
Подписка на рассылку
- ВКонтакте
- ok
- YouTube
- Яндекс.Дзен
- TikTok
Агрегат, преобразующий электрическую энергию в механическую, называется электродвигателем. Эти машины могут применяться в бытовой технике (маломощные асинхронные двигатели) и в промышленности (краны и лебедки общепромышленного значения и прочее).
Рисунок 1. Классический пример трехфазного асинхронного электродвигателя — двигатель серии АИР Наибольшее распространение получили трехфазные асинхронные электродвигатели — они используются во всех сферах народного хозяйства (станки и оборудование, автоматика, телемеханика и т. д.).
На сегодняшний день именно этот тип электрических машин наиболее распространен. Объясняется это простотой эксплуатации, надежностью этих машин, небольшим весом и удачными габаритными размерами.
Электродвигатель с короткозамкнутым ротором используется в электроприводах разных станков (металлообрабатывающих, грузоподъемных, ткацких, деревообрабатывающих), в вентиляторах, землеройных машинах, в лифтах, насосах, бытовых приборах и т.д.
Электродвигатель асинхронный с короткозамкнутым ротором позволяет значительно снизить энергопотребление оборудованием, которое он питает, обеспечить высокий уровень его надежности, увеличить срок службы. Совокупность этих характеристик, как правило, сразу положительно отражается на модернизации всего производства.
Основные виды и некоторые характеристики электродвигателя асинхронного однофазного и трехфазного
Сегодня самыми востребованными в разных отраслях промышленности и любого производства являются следующие виды машин:
- общепромышленные — применяются на производстве и в агропромышленном секторе;
- взрывозащищенные — предназначены для использования в отраслях промышленности взрывоопасной: химическая, добыча нефти, газовая и угледобывающая промышленность;
- электродвигатели крановые, подходящие для работы в составе любых поворотных и крановых механизмов.
Рисунок 2. Двигатель с фазным ротором — крановый серии МТF. Электродвигатели прочно вошли в современную промышленность. От их надежности и качества зависит все производство. Не важно, стиральная машина или ткацкий станок, складское оборудование или система вентиляции — работа многих машин невозможна без исправной работы электромотора. В этой связи важно не просто купить электродвигатель, например у надежного поставщика, но и неукоснительно соблюдать все указанные в сопроводительных документах условия эксплуатации. Для северного сурового климата, к примеру, требуются специальные двигатели, которые рассчитаны на эксплуатацию в условиях низких температур. Для эффективной работы в электродвигателях может использоваться встроенная температурная защита. Такое конструктивное решение позволяет отключить двигатель от сети, если температура обмоток или подшипников превысит норму, или включить дополнительные вентиляторы обдува.
Анализ механической характеристики асинхронной машины
Почему механическая характеристика асинхронной машины S=f(M) рис.9 имеет такой ярко выраженный нелинейный характер c двумя экстремумами? Чтобы ответить на этот вопрос, вновь вернемся к формуле электромагнитного момента (49) M = CM Фm I2 cosψ2 . Если в этом выражении принять магнитный поток примерно постоянным Фm≈const, то при малых скольжения S, когда cosψ2 изменяется мало рис.8, момент двигателя при увеличении скольжения изменяется примерно так же, как и ток I / 2 рис.7. В области больших скольжении интенсивность увеличения тока I / 2 c ростом скольжения уменьшается, и момент двигателя уменьшается примерно по тому же закону, что и cosψ2. Максимальный момент наступает при критическом скольжении SK.
Чтобы найти значения критического скольжения SK и критического момента МK, продифференцируем выражение для электромагнитного момента (56) по скольжению S и приравняем полученное выражение к нулю
Анализ полученного выражения показывает, что оно обратится в нуль, если
Рис.9. Механические характеристики асинхронной машины а — зависимость M=f(S), б — зависимость S=f(M)
Тогда критическое скольжение SK, при котором момент асинхронной машины имеет максимальное значение, равно
![]() |
знак (+) соответствует работе асинхронной машины в качестве двигателя, знак (-) — в качестве генератора. Подставляя положительное значение SK (57) в выражение для электромагнитного момента (56), получим выражение для критического момента в двигательном режиме
![]() |
Раскроем круглые скобки в знаменателе полученного выражения и разделим числитель и знаменатель на получим
![]() |
Подставляя отрицательное значение SK (57) в выражение для электромагнитного момента (56),
получим аналогичное выражение для критического момента асинхронной машины в генераторном режиме
Найдем отношение критических моментов асинхронной машины в генераторном и двигательном режимах
Таким образом, значение критического момента в генераторном режиме больше, чем в двигательном, что обусловлено влиянием падения напряжения на активном сопротивлении обмотки статора.
В практических расчетах удобно выражать электромагнитный момент M в долях от максимального момента Mкд
![]() |
В полученном выражении числитель и знаменатель разделим на
![]() |
![]() |
Если принять r1=0, тогда ε=0, формула (63) упростится и примет вид
![]() |
Это выражение впервые было получено М. Клоссом и известно в технической литературе как формула Клосса. Задаваясь значениями скольжения S, можно построить механическую характеристику асинхронного двигателя.
Одним из важнейших эксплуатационных параметров асинхронного двигателя является кратность максимального момента или перегрузочная способность двигателя λМ, которая равна отношению критического момента к номинальному при номинальном напряжении
Для двигателей разных мощностей и угловых скоростей вращения общепромышленной серии кратность максимального момента составляет λМ=1,7. 2,2. Крановые двигатели отличаются более высокой кратностью максимального момента λМ=2,3..3,4.
Другим важным эксплуатационным параметром асинхронного двигателя является пусковой момент МП, который получается из общей формулы (56) при S=1
Максимальное значение момента при пуске равно моменту критическому (при SK=1), что достигается, примерно, при условии равенства активного сопротивления в цепи ротора и суммы индуктивных сопротивлений рассеяния, т.е. r2’+rдоб≈x1+x2’=xK. В таблицах, как правило, приводят значения момента при пуске двигателя по отношению к номинальному моменту, т.е. MП/МНОМ. Для двигателей общепромышленного назначения эта величина составляет MП/МНОМ=1..1,2.
3. ИССЛЕДОВАНИЕ МЕХАНИЧЕСКОЙ ХАРАКТЕРИСТИКИ АСИНХРОННОЙ МАШИНЫ
Электрическая машина проектируется и изготавливается для определенного расчетного режима, называемого номинальным режимом работы. Этот режим реализуется в естественной схеме включения асинхронной машины при отсутствии добавочных сопротивлений в цепях статора и ротора и при номинальных значениях напряжения U1НОМ и частоты f1НОМ. Механическая статическая характеристика асинхронного двигателя, соответствующая этим условиям, называется естественной характеристикой.
Процессы управления и регулирования электроприводов сводятся к изменению характеристик двигателя путем изменения схем соединения обмоток, введения в цепи статора и ротора добавочных сопротивлении, изменения напряжения и частоты источника питания. Механические характеристики, получаемые в этих случаях, называются искусственными характеристиками асинхронного двигателя.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Асинхронный двигатель
Если поместить во вращающееся магнитное поле короткозамкнутую медную или алюминиевую рамку на валу электродвигателя, то она вместе с валом придет во вращение по направлению вращения поля. Явление это объясняется следующим образом. Пусть угловая скорость вращения рамки n несколько меньше угловой скорости вращения поля no (асинхронное вращение). В этом случае рамка «проскальзывает» относительно поля. Величину s = (no-n)/no называют скольжением. Относительно магнитного поля рамка вращается с угловой скоростью, пропорциональной скольжению. Поэтому в ней возникает индукционный ток, пропорциональный относительной скорости вращения рамки, т. е. скольжению. По закону Ленца, индуцированный ток взаимодействует с полем так, что рамка увлекается полем.
А так как магнитное поле вращается, то это приводит к вращению рамки. Вращающий момент, действующий на рамку, пропорционален индуцированному току и тем самым скольжению. Этот вращающий момент уравновешивается внешней нагрузкой. Таким образом, в установке данного типа рамка всегда вращается несколько медленнее вращения поля. Такое вращение называют асинхронным (т. е. неодновременным, несогласованным). Сам двигатель получил название асинхронного.
Дополнительно по теме
- Активные и индуктивные сопротивления обмоток
- Расчет магнитной цепи
- Основные уравнения, схемы замещения и векторная диаграмма
- Основные энергетические соотношения и механическая характеристика
- Потери и КПД
- Круговая диаграмма, рабочие характеристики
- Определение главных размеров двигателей
Асинхронный двигатель наиболее распространен в качестве электропривода различных механизмов благодаря своей простоте и надежности. . Их применяют для привода машин и механизмов, не требующих строго постоянной частоты вращения и ее регулировки. Важнейшими достоинствами данного двигателя являются простота его устройства и большая надежность, вызванная отсутствием скользящих контактов. Двигатель имеет достаточный пусковой момент, легко реверсируется (т. е. в нем легко меняется направление вращения ротора). В результате этого асинхронные двигатели являются самыми распространенными в технике электрическими машинами. Более 60 % всей вырабатываемой в мире энергии преобразуется в механическую, в основном, с помощью асинхронных двигателей. Мощность двигателей колеблется от десятков ватт до сотен киловатт.
Асинхронный двигатель изготавливается в однофазном, двухфазном и трехфазном исполнении.
Рассмотрим вращающееся поле переменного тока трехфазной цепи короткозамкнутого асинхронного двигателя с тремя обмотками, сдвинутыми по окружности на 120° и соединенными звездой .
Обмотки статора питаются симметричным трехфазным напряжением. Начальную фазу тока в обмотке А-х принимаем равной нулю. Тогда:
Асинхронный двигатель состоит из статора и ротора. Статор представляет собой литой корпус (стальной или чугунный) цилиндрической формы. Внутри статора располагается магнитопровод с вырубленными пазами, в которые укладывается статорная обмотка. Концы обмоток выводятся в клеммную коробку и могут быть соединены как треугольником, так и звездой. Корпус статора с торцов закрыт подшипниковыми щитами, в которые запрессовываются подшипники вала ротора. Ротор состоит из стального вала с напрессованным на него магнитопроводом.
По конструкции роторов двигатели делятся на две группы. Первая — с короткозамкнутым ротором и вторая — с фазным. У двигателя с короткозамкнутым ротором в пазы заливаются алюминиевые стержни и накоротко замыкаются по торцам. У фазового ротора имеются три обмотки, соединенные в звезду. Выводы обмоток присоединены к кольцам, закрепленным на валу. К кольцам при пуске прижимаются неподвижные щетки, к которым подключаются сопротивления. В начальный момент пуска ротор находится в заторможенном состоянии, затем сопротивление уменьшается и двигатель плавно запускается, что позволяет снизить пусковой ток.
К обмоткам статора подводится трехфазное напряжение, а ротор вращается посредством вращающегося магнитного поля, создаваемого системой трехфазного тока.
В момент времени t1: . Если ток фазы А положителен, т.е. течет от начала к концу, то, пользуясь правилом правоходового винта, можно найти картину распределения магнитного поля для времени t1.
В момент времени t2 вектор результирующей магнитной индукции Вm развернется на угол a1 и далее по часовой стрелке с периодом обращения 360°. Для данного примера угол a1 = 60°.
Таким образом, магнитная индукция представляет собой вращающееся поле с амплитудой
За период поле делает один оборот, , (где f = 50 Гц), и является промышленной частотой питающего переменного напряжения и тока.
При синусоидальном характере вращающегося поля его скорость no равна отношению af/p (где р — число пар полюсов). В рассматриваемом примере р = 1 и частота вращения равна соответственно 3000 оборотам в минуту. Если число катушек в каждой фазе увеличить в два раза, а сдвиг фаз между токами сохранить 120°, то частота вращения уменьшится в два раза за счет увеличения числа пар полюсов. Особенностью короткозамкнутого асинхронного двигателя является наличие постоянной частоты вращения поля статора, определяемой числом пар полюсов.
Если поменять местами любые две фазы, то возникнет поле обратной последовательности и ротор начнет вращаться в другую сторону. Еще одной особенностью асинхронных двигателей является разность частоты вращения полей статора no и ротора n, что делает возможным их электромагнитное взаимодействие. При этом поле ротора будет как бы скользить относительно поля статора
где s — скольжение, при номинальной мощности двигателя скольжение составляет 0,01-0,03.
Основное вращающееся магнитное поле индуцирует в обмотках статора и ротора ЭДС, аналогично трансформатору, так как при разомкнутом роторе асинхронный двигатель представляет собой трансформатор в режиме холостого хода:
где индекс 1 относится к параметрам статора, а 2 — к параметрам ротора; Кобм — обмоточные коэффициенты, определяемые способом укладки обмоток (петлевая или волновая). Кобм=0,92-0,98; Е2s=E2S; Е2 — действующее значение ЭДС неподвижного ротора при s = 1; f2=f1S.
В асинхронном двигателе кроме основного магнитного потока создаются потоки рассеяния. Один охватывает проводники статора, другой — ротора. Потоки рассеяния характеризуются соответствующими индуктивными сопротивлениями Х1 и Х2s.
Уравнения электрического состояния фаз обмоток статора и ротора:
Момент асинхронного двигателя
Вращающий электромагнитный момент двигателя в соответствии с законом электромагнитных сил
См — конструктивная постоянная;
j2s- фазовый сдвиг между током и магнитным потоком.
Отношение максимального момента Мmax к номинальному Мн определяет перегрузочную способность двигателя и составляет 2,0-2,2 (дается в каталожных данных). Максимальный момент соответствует критическому скольжению sк, определяемому активными и индуктивными сопротивлениями двигателя, и пропорционален активному сопротивлению цепи ротора.
Потери в асинхронном двигателе
Потери делятся на потери в статоре и в роторе. Потери в статоре состоят из электрических потерь в обмотке Рэ1 и потерь в стали Рст, а потери в роторе — из электрических Рэ2 и механических Рмех плюс добавочные потери на трение и вентиляцию Рдоб.
где К = 2,9-3,6 определяется диаметром статора D1.
Потери в стали в рабочем режиме во много раз меньше электрических потерь в роторе и ими обычно пренебрегают.
КПД асинхронного двигателя составляет от 0,75 до 0,95.
Рабочий момент двигателя пропорционален квадрату напряжения, что необходимо учитывать при включении двигателя в протяженных распределительных сетях. Номинальному моменту соответствует номинальное скольжение, а пусковому — sп.
Зависимость момента двигателя от скольжения М=f(s) приведена на рисунке.
На участке от 0 до Мmax двигатель работает в устойчивом режиме, а участок от Sk называется режимом опрокидывания двигателя, при котором двигатель в результате перегрузки останавливается и не может вернуться в рабочий режим без очередного запуска. Пусковые свойства двигателя определяются соотношением пускового момента Мп и номинального. В соответствии с каталожными данными оно составляет 1,6-1,7. При пуске асинхронного двигателя cosj очень мал и пусковой ток в обмотке статора может возрастать в 5-7 раз по сравнению с номинальным. Ограничение его осуществляется изменением частоты питающего напряжения для двигателя с короткозамкнутым ротором и увеличением активного сопротивления в цепи ротора для двигателя с фазовым ротором. Для механизмов, имеющих тяжелые условия пуска, где желательно использовать асинхронный двигатель с короткозамкнутым ротором, применяются двигатели с улучшенными пусковыми свойствами: с большим пусковым моментом и меньшим пусковым током, чем у двигателей общего назначения.
Механическая характеристика асинхронного двигателя
Зависимость скорости вращения от нагрузки на валу двигателя называется механической характеристикой асинхронного двигателя.
Участок АВ механической характеристики соответствует устойчивому режиму работы асинхронного двигателя. Увеличение нагрузки (тормозного момента) ведет к некоторому снижению частоты вращения ротора, что вызывает увеличение вращающего момента. При превышении тормозным моментом критического, двигатель останавливается. Точка В на графике соответствует точке критического или опрокидывающего момента.
Регулирование частоты вращения
Регулирование частоты вращения может быть осуществлено тремя способами: изменением частоты питающего напряжения, переключением числа пар полюсов и изменением скольжения.
Для регулирования частоты вращения двигателей с короткозамкнутым ротором в настоящее время широко используются частотные преобразователи с микропроцессорным управлением.
Тормозные режимы возникают в машине при определенных условиях или создаются искусственно с целью ускорения процесса остановки двигателя. Торможение может быть:
- генераторное с отдачей энергии в сеть;
- противовключением;
- динамическое.
Генераторным тормозным режимом называется режим работы двигателя, когда под действием внешнего момента ротор двигателя вращается в том же направлении, что и магнитное поле, но с большей скоростью.
Тормозной режим противовключения возникает в том случае, когда под действием внешнего момента, приложенного к валу двигателя, ротор вращается в противоположную сторону относительно вращающегося магнитного поля.
Динамический тормозной режим получается при отключении обмотки статора от сети трехфазного тока и подключении ее на время торможения к источнику энергии постоянного тока.
Расчетные формулы для выбора двигателя имеют вид:
Выбор двигателя по каталогу осуществляется следующим образом. По заданному моменту рабочего механизма и частоте вращения определяется необходимая мощность. После этого определяются условия окружающей среды, выбирается исполнение по типу монтажа и высоте оси рабочего вала двигателя. Зная эти параметры, по каталогу проверяют необходимую перегрузочную способность, КПД, массу и момент инерции.
Для шахтных условий используются двигатели взрывозащищенного исполнения; для крановых механизмов — двигатели с повышенным скольжением и т.д.
В бытовых приборах используются однофазные двигатели. Однофазный двигатель отличается от трехфазного тем, что его статорная обмотка подключается к однофазному источнику питания. Ротор выполняется короткозамкнутым. На статоре размещаются две обмотки, оси которых смещены друг относительно друга на 90 электрических градусов. Одна называется рабочей, а другая -пусковой.
Рабочие характеристики асинхронного двигателя
Рабочими характеристиками асинхронного двигателя являются зависимости от мощности на валу Р2 таких параметров, как момент, частота вращения, ток статора, КПД и cosj.Анализ характеристик показывает, что частота вращения ротора падает с увеличением нагрузки, а момент пропорционален ей. Ток статора изменяется по нелинейному закону, что связано с магнитной системой двигателя и при Р2=0 определяется током холостого хода, составляющего до 40% его номинального значения.
В системах управления используются двигатели, в которых одна из обмоток статора постоянно подключена к сети переменного тока (обмотка возбуждения), а ко второй (обмотка управления) подводится напряжение управления. Такие двигатели относятся к классу микромашин.
Микромашины используются в информационных системах, где они выполняют функции первичных преобразователей для вычислительных операций в системах автоматики и телемеханики.
Одним из примеров является сельсин, предназначенный для передачи на расстояние угловых перемещений валов, механически не связанных друг с другом. По конструкции сельсины делятся на контактные и бесконтактные. Контактные сельсины выполняются в двух вариантах. В одном обмотка возбуждения располагается на роторе, а трехфазная обмотка, называемая обмоткой синхронизации, в пазах статора. В другом варианте наоборот. При включении обмотки возбуждения сельсина на однофазное напряжение ток создает пульсирующее магнитное поле, которое индуцирует в каждой фазе обмотки синхронизации переменную ЭДС. Действующее значение ЭДС каждой фазы зависит от расположения осей этих фаз относительно оси потока возбуждения.
В простейшем случае схема дистанционной передачи угловых перемещений состоит из двух одинаковых сельсинов, у которых одноименные зажимы обмоток синхронизации соединены проводами линии связи, а на обмотки возбуждения подается напряжение сети. Один из сельсинов называют сельсин-датчиком, другой — сельсин-приемником.