Биполярные двигатели как определить обмотки
Потомственный мастер
Электричество, сантехника, установка бытовой техники. Просто о сложном
Как определить начало и конец обмотки в двигателе.
В этой статье я расскажу способ, как определить начало и конец обмотки в асинхронном трёхфазном двигателе.
Когда вам может потребоваться данный материал? Только в том случае, если у вас имеется в коробке брно шесть проводов одинакового цвета и на них нет никаких обозначений. Или ваш двигатель был соединен треугольником, а вы хотите получить возможность соединить его звездой. Как это сделать я писал здесь . Чтобы проще было объяснять материал, сначала пройдемся по принятым маркировкам выводов обмоток двигателей.
Выводы асинхронного двигателя. Маркировка выводов асинхронного двигателя
Встречаются различные маркировки выводов обмоток двигателя. Отечественная маркировка от С1 до С6 и международная, которую вы видите на рисунке.
В наше время встречаются обе маркировки, но для «обучения» мы будем применять новые обозначения, как более наглядные. Ранее, я уже говорил, что начало и конец обмоток понятия абсолютно условные, главное условие, которое играет важную роль это такое соединение обмоток, когда магнитные потоки не направлены встречно. Если два одинаковых потока направить встречно, они как бы уничтожают друг друга. Нам же надо получить согласованное направление магнитных потоков. В двигателе находятся три обмотки. Грубо говоря, двигатель, это трансформатор с тремя обмотками и сердечником в виде статора. Таким образом, обмотки в двигателе связывает магнитный поток, который протекает по статору, а его создает ток, который протекает по обмоткам. Ротор – это лишь приятная «вкусняшка», наличие которой позволяет получить из электрической энергии механическую.
Начало и конец обмоток электродвигателя
Ну что ж, приступим. Прежде, чем начинать процедуру, вам нужно подготовиться. Для этого вам потребуются:
- мультиметр или лампа накаливания (предпочтительнее, конечно же, мультиметр)
- маркеры для проводов
- знание техники безопасности , поскольку вы будете работать с опасным напряжением
- обычная сетевая вилка с проводом
- что-то, чем вы будете соединять провода, когда приступите к поиску выводов обмотки
- ну и материал данной статьи.
В качестве маркеров можно использовать кембрики, бумагу с резинками, цветную изоленту и обычные перманентные маркеры, в общем, что угодно, что позволит вам промаркировать выводы. Вам потребуется шесть маркеров, на которых вы напишете обозначения начала и концов обмоток.
Первым делом нужно определить обмотки двигателя
Названия обмоток тоже абсолютно условны. Хотя, если принимать в расчёт такое понятие, как фазировка, то правильное включение дает точное представление о том, в какую сторону будет вращаться вал двигателя и не более того. Выставляете мультиметр в режим прозвонки , один щуп прикладываете к любому из шести проводов, вторым щупом находите конец, который будет прозваниваться. И эту пару звонящихся концов маркируете. Пусть это будут U1 и U2. Остается четыре конца. Повторяете операцию и еще одну пару снова маркируете. Пусть это будут V1 и V2. Осталась еще пара концов, их проверяете на всякий случай, чтобы быть уверенными, что обмотка в исправном состоянии и тоже маркируете оставшимися маркерами W1 и W2. Теперь у вас есть три обмотки и вы знаете их выводы. Но не знаете, где начало, а где конец каждой обмотки. Другими словами, вы не знаете, как направлены магнитные потоки этих обмоток согласно имеющейся маркировке, поскольку она сейчас носит случайный характер.
Как определить начало и конец обмоток
Приступаем к поиску концов. Снова предупрежу о технике безопасности, поскольку сейчас вы будете работать с опасным напряжением 220 вольт. Сама процедура очень простая. Вам надо на одну обмотку присоединить лампу или вольтметр (мультиметр, в режиме измерения напряжения ), а две других обмотки соединить последовательно и подать на них напряжение. Теперь рассмотрим эту процедуру подробнее.
С присоединением лампы или вольтмера проблем не возникнет. Допустим это будет обмотка W1-W2. Остается две обмотки. Согласно имеющимся маркерам вы соединяете их в таком порядке, как это показано на рисунке, а именно соединяете между собой U2 и V1. На выводы U1 и V2 подаете ПЕРЕМЕННОЕ напряжение 220 вольт. Обратите внимание, именно переменное, поскольку постоянное превратит наш двигатель в электромагнит, но при этом напряжение в третьей обмотке наводиться не будет. На реальном двигателе это будет выглядеть, как на фотографии ниже:
Обратите внимание, я специально выделил одним цветом (зеленым) соединенные обмотки на схеме и на фотографии. Теперь, если магнитные потоки обмоток совпадут, то в третьей обмотке будет наведено напряжение. Если посчитать грубо, то чуть меньше 100 вольт. Следовательно, лампочка на третьей обмотке начнет светиться, но не в полный накал. Если же магнитные потоки будут направлены встречно, то в третьей обмотке напряжение наводиться не будет и лампочка не загорится. Если лампочка загорелась, все отлично, придумайте, как навсегда промаркировать выводы обмоток и приступаем к третьей. Если лампочка не загорелась, значит меняем местами выводы любой обмотки. Пусть это будет обмотка V1V2 (то есть, если раньше была схема U1→U2→ V1 →V2, то теперь будет схема U1→U2→V2→ V1 ) и снова проверяем. Лампочка засветилась? Отлично! Но прежде чем переходить к третьей обмотке, поскольку мы определили условные начала и концы двух обмоток нужно придумать, как навсегда промаркировать эти выводы, чтобы в дальнейшем вам не пришлось возвращаться к данной процедуре. Теперь будем работать только с третьей обмоткой. Маркеры первых двух трогать уже не будем. К любой из найденных обмоток подключаем третью, а на освободившуюся подключаем лампочку. То есть на обмотку (пусть будет) U1U2 мы теперь подключаем вольтметр или лампочку, а соединяем обмотки V1→V2→W1→W2. И все повторяем по новой. С одним условием, что маркеры обмоток U и V мы не трогаем. Если лампочка при проверке не загорается, то меняем маркеры только на обмотке W.
Как видите, процедура не слишком сложная и при необходимой сноровке займет не больше 15 минут.
Есть и другие методы определения начал и концов обмоток, но они более сложные и требуют стрелочного вольтметра или сборки несложной схемы, хотя с другой стороны, они более безопасные. Но этот метод наиболее простой. А если не боитесь электричества и внимательно прочитали технику безопасности, то вместо мультиметра прозванивать обмотки можно той же лампочкой. Для этого можно использовать такую схему, которую вы видите ниже:
То есть, можно вообще обойтись без мультиметра. Достаточно одной лампочки на 220 вольт.
Система управления шаговым двигателем ШД-5Д1МУ3 (ДШР-80)
Как подключить шаговый двигатель – подробное пошаговое руководство и схемы подключения шаговых двигателей с 4, 5, 6 и 8 выводами. © Автор статьи интернет-магазин DARXTON
- Что такое шаговый двигатель?
- Преимущества и недостатки шагового электродвигателя
- Что такое шаговый двигатель?
- Управление шаговым двигателем
- КАК ПОДКЛЮЧИТЬ ШАГОВЫЙ ДВИГАТЕЛЬ
- КАК ПОДКЛЮЧИТЬ ШАГОВЫЙ ДВИГАТЕЛЬ С 4 ВЫВОДАМИ
- КАК ПОДКЛЮЧИТЬ УНИПОЛЯРНЫЙ ШАГОВЫЙ ДВИГАТЕЛЬ С 6 ВЫВОДАМИ
- КАК ПОДКЛЮЧИТЬ ШАГОВЫЙ ДВИГАТЕЛЬ С 8 ВЫВОДАМИ
- Карданные шарниры для дельта-принтера
- Устройство и принцип работы
- Какой термоборьер для Pet-g
- Типы шаговых двигателей
- По конструкции ротора
- Реактивный
- С постоянными магнитами
- Гибридные
- По виду обмоток
- Униполярный
- Биполярный
- Перейдем к практике
- Подключение шагового двигателя
- Типичные схемы подключения ШД
- Волнистые стенки.
- Простейший драйвер шагового двигателя своими руками
Что такое шаговый двигатель?
Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.
В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.
Преимущества и недостатки шагового электродвигателя
К преимуществам эксплуатации шагового двигателя можно отнести:
- В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
- Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
- Обеспечивает высокую скорость старта, реверса, остановки;
- Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
- Для позиционирования шаговому двигателю не требуется обратной связи;
- Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
- Сравнительно меньшая стоимость относительно тех же сервоприводов;
- Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.
К недостаткам применения шагового двигателя относятся:
- Может возникать резонансный эффект и проскальзывание шагового агрегата;
- Существует вероятность утраты контроля из-за отсутствия обратной связи;
- Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
- Сложности управления из-за особенности схемы
Что такое шаговый двигатель?
Прежде чем перейти к статье, давайте сразу договоримся, что статья не направлена на специалистов, а её цель – донести любознательным любителям техники и технологий о таком устройстве, как шаговый двигатель и об основах работы с ними. Поэтому умников и критиков, жаждущих поговорить о великом многообразии управляемого и регулируемого электропривода, прошу идти общаться на тематические ресурсы по ЧПУ-станкам и 3D-принтерам.
Итак, для начала сформулируем определение. Согласно Википедии: « Шаговый электродвигатель — синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора».
Формулировка достаточно понятна, но её последнее предложение может вызвать некоторое недопонимание. Поэтому я предлагаю провести небольшое сравнение.
Всем известно что ротор «обычного» электродвигателя, будь то асинхронного, синхронного, коллекторного или любого другого будет вращаться до тех пор, пока на него подают напряжение питания, и после отключения питания он будет вращаться еще какое-то время по инерции, если же не используются какие-либо средства для его торможения.
Ротор такого двигателя вращается просто вокруг своей оси без каких-либо ограничений, на 360 градусов, и остановится он в любом месте. Зафиксировать его положением можно только механически (тормозом). По этой причине не получится добиться точного позиционирования исполнительных механизмов, что требуется в робототехнике, ЧПУ-станках и другом автоматизированном оборудовании.
Но шаговые двигатели разработаны для применения в механизмах, где детали поворачиваются точно на требуемый угол.
В приведенном выше определении было сказано «… вызывает дискретные угловые перемещения (шаги) ротора …» — это значит, что ротор шагового двигателя не вращается в обычном понимании, а поворачивается на какой-то определенный, «дискретный» угол. Этот угол называется шагом, отсюда и название «шаговый двигатель». Мне нравится еще одно название этих устройств — «двигатель с конечным числом положений ротора».
Питание такого двигателя невозможно без системы управления, или как его еще называют, драйвера — он подаёт импульсы в нужные обмотки, чтобы повернуть ротор на нужный угол. Это наглядно иллюстрирует приведенная ниже анимация.
Кроме того, что можно поворачивать двигатель на определенный угол и фиксировать его в этом положении, делать это всё можно без схемы обратной связи (датчиков положения и прочего).
Рассматривать типы шаговых двигателей в пределах этой статьи мы не будем, лишь кратко перечислим, какими они бывают. По конструкции:
2. С постоянными магнитами.
По способу питания:
- Униполярные (однополярные — ток пропускают через обмотки только в одну сторону).
- Биполярные (ток пропускают через обмотки в обе стороны). Здесь драйвер должен подавать напряжение различной полярности, что несколько усложняет схемотехнику. При тех же размерах развивают бОльшую мощность по сравнению с униполярными.
В униполярном двигателе зачастую 5 проводов — 1 общий, от середины каждой из двух обмоток, и 4 от концов обмоток. Иногда говорят «4 обмотки» – это также правильно, поскольку фактически мы получаем 4 обмотки соединенных в общей точки.
Униполярный шаговый двигатель
Также ШД могут отличаться и по количеству проводов, это зависит от того, как соединены обмотки и какое питание предполагается, некоторые варианты вы видите в таблице ниже.
Варианты схем соединения обмоток в шаговых двигателях
Управление шаговым двигателем
Различают два способа управления шаговым двигателем:
1. Полношаговое .
Одновременно включается только пара обмоток (без перекрытия с другими). Достигается максимальный момент на валу, но точность установления угла меньше, чем в других способах.
2. Полушаговое .
В этом случае увеличивается количество шагов, соответственно повышается точность установки положения вала. На каждый первый шаг включается одна обмотка, на каждый второй шагами (полушаг) – пара обмоток. Но когда включена одна обмотка момент на валу снижается вдвое.
На анимациях ниже наглядно продемонстрировано
В некоторых источниках отдельно обозначают микрошаговое управление. Используется, когда необходимо максимальное количество шагов и точность управления. По способу управления оно похоже на полушаговый режим, между шагами включаются две обмотки, а отличие в том, что токи в них распределяются не равномерно. Главный недостаток такого подхода — усложняется коммутация (система управления).
КАК ПОДКЛЮЧИТЬ ШАГОВЫЙ ДВИГАТЕЛЬ
Как подключить шаговый двигатель с 4, 5, 6 и 8 выводами к драйверу.
В предыдущих статьях мы рассматривали процесс выбора шагового электродвигателя (см. статью
«Как выбрать шаговый двигатель»
) в зависимости от способа его применения. В данной статье мы подробно рассмотрим как подключить шаговый двигатель.
Шаговые электродвигатели могут поставляться с несколькими вариантами схем подключения. Выбор схемы будет определяться типом двигателя. Большинство наиболее распространенных шаговых двигателей имеют схемы, предполагающие использование 4-х, 5-ти, 6-ти или 8-ми проводов.
КАК ПОДКЛЮЧИТЬ ШАГОВЫЙ ДВИГАТЕЛЬ С 4 ВЫВОДАМИ
Если в вашем распоряжении имеется шаговый двигатель, подключаемый при помощи только четырех проводов, это означает, что в нем две обмотки, это биполярный мотор и вы сможете использовать его только с биполярным драйвером. Обратите внимание на то, что каждая из фазных обмоток содержит пару проводов — для идентификации каждого провода используйте тестер (мультиметр).
Найдите замкнутые между собой провода(которые прозваниваются) и подключите их к шаговому двигателю. Лучше сразу свяжите их вместе, чтобы не повторять операцию постоянно
КАК ПОДКЛЮЧИТЬ УНИПОЛЯРНЫЙ ШАГОВЫЙ ДВИГАТЕЛЬ С 6 ВЫВОДАМИ
Также, как и шаговый двигатель с четырехконтактным соединением, униполярный двигатель с 6 проводами имеет пару проводов для каждой обмотки. Однако, он также имеет центральный вывод для каждой обмотки, что дает возможность подключать его как в качестве
биполярного шагового двигателя
, так и в качестве однополярного.
Для того, чтобы подключить шаговый двигатель с 6 выводами, с помощью тестера разделите все провода на три группы, замкнутые между собой, а затем найдите центральные выводы, измеряя сопротивление между проводами. Если вы хотите подключить ваш электродвигатель к униполярному драйверу, используйте все шесть проводов.
Подключение к биполярному драйверу(коих подавляющее большинство) потребует от вас использования только одного конца провода с одним выводом и одного центрального вывода для подключения к каждой обмотке.
Схема подключения шагового электродвигателя с 5-ю выводами очень похожа на схему подключения с 6-ю контактами. Главное ее отличие состоит в том, что центральные выводы замкнуты между собой внутри, соединяясь в один провод. Это обеспечивает работу электродвигателя только по однополярной схеме.
Кроме того, определить обмотки можно только методом проб и ошибок; лучше всего попытаться найти центральный вывод, так как его сопротивление составляет половину от сопротивления других проводов.
КАК ПОДКЛЮЧИТЬ ШАГОВЫЙ ДВИГАТЕЛЬ С 8 ВЫВОДАМИ
Наконец, существуют шаговые электродвигатели, подключаемые при помощи 8-ми проводов. Для того, чтобы понять, как подключить шаговый двигатель с 8 выводами, мы должны вернуться к инструкциям выше.Их схема подключения во многом схожа со схемой, предполагающей использование 6-ти проводов. Разница между ними состоит в том, что две фазы разделены на две отдельных обмотки. Имея указанную схему, вы сможете подключить шаговый двигатель по однополярной схеме, а также иметь три различные комбинации для биполярного подключения.
ВИДЫ ОБМОТОК ЭЛЕКТРОДВИГАТЕЛЕЙ И СПОСОБЫ ИХ ИЗОБРАЖЕНИЯ
Важная составная часть электродвигателей — ее обмотки, в которых происходят основные рабочие процессы по преобразованию энергии. В наиболее распространенных типах электрических машин можно выделить:
трехфазные обмотки машин переменного тока, используемые обычно в статорах трехфазных асинхронных и синхронных машин, а также в роторах асинхронных двигателей с контактными кольцами.
однофазные обмотки статоров асинхронных однофазных двигателей с короткозамкнутым ротором.
обмотки якорей коллекторных машин постоянного и однофазного переменного тока.
короткозамкнутые обмотки роторов асинхронных электродвигателей.
обмотки возбуждения синхронных и коллекторных машин.
Обмотки возбуждения синхронных и коллекторных машин состоят, как правило, из сравнительно простых полюсных катушек. Несложным является и устройство короткозамкнутых обмоток роторов асинхронных двигателей. Остальные же виды перечисленных выше обмоток представляют собой достаточно сложные системы размещенных в пазах изолированных проводников, соединенных по особым схемам, требующим специального изучения.
Виток обмоток:
Простейшим элементом обмотки является виток, который состоит из двух последовательно соединенных проводников, размещенных в пазах, находящихся, как правило, под соседними разноименными полюсами.
Лежащие в пазах проводники витка являются его активными сторонами, поскольку именно здесь наводится ЭДС от главного магнитного поля машины. Находящиеся вне паза части витка, соединяющие между собой активные проводники и располагающиеся по торцам магнитопровода, называются лобовыми частями.
Проводники, образующие виток, могут состоять из нескольких параллельных проводов. Обычно к этому прибегают, чтобы сделать обмотку мягкой и облегчить ее укладку в пазы.
Один или несколько последовательно соединенных витков образуют катушку или секцию обмотки. Если секция состоит из одного витка, то такую обмотку называют стержневой, так как в этом случае находящиеся в пазах проводники обычно представляют собой жесткие стержни. Обмотка, состоящая из многовитковых секций, называется катушечной.
Катушка обмотки:
Катушка, или секция обмотки, характеризуется числом витков wc и шагом y, т. е. количеством охватываемых ею зубцов магнитопровода. Так, например, если одна сторона катушки (секции) лежит в первом пазу, а вторая — в шестом, то катушка охватывает пять зубцов и шаг ее равен пяти (у = 5). Шаг, таким образом, может быть определен как разность между номерами пазов, в которые уложены обе стороны катушки (у = 6 — 1 = 5).
Зачастую в обмоточных данных и технической литературе шаг обозначают номерами пазов (начиная с первого), в которые уложены стороны катушки, т. е. в данном случае это обозначение выглядит так: у = 1 — 6.
Шаг обмотки называют диаметральным, если он равен полюсному делению τ, т. е. расстоянию между осями соседних разноименных полюсов, или, что то же самое, числу пазов (зубцов), приходящихся на один полюс. В этом случае у = τ = z/2p, где z — число пазов (зубцов) сердечника, в котором размещена обмотка; 2р — число полюсов обмотки.
Если шаг катушки меньше диаметрального, то его называют укороченным. Укорочение шага, характеризуемое коэффициентом укорочения ky = у / τ, широко применяется в обмотках статоров трехфазных асинхронных электродвигателей, так как при этом экономится обмоточный провод (за счет более коротких лобовых частей), облегчается укладка обмотки и улучшаются характеристики двигателей. Применяемое укорочение шага обычно лежит в пределах 0,85 — 0,66.
В духполюсной электрической машине центральный угол, соответствующий полюсному делению, равен 180°. Хотя в четырехполюсных машинах этот геометрический угол равен 90°, в шестиполюсных — 60° и т. д., принято считать, что между осями соседних разноименных полюсов во всех случаях угол равен 180 электрическим градусам (180 эл. град.). Иначе говоря, полюсное деление τ = 180 эл. град.
Различают однослойные обмотки, где каждый паз занят стороной одной катушки (секции), и двухслойные, где в пазах размещены стороны разных катушек (секций) в два слоя.
Способы изображения обмоток:
Способы изображения обмоток электрических машин достаточно условны и своеобразны. Обмотки содержат большое число проводников, и изобразить все соединения и проводники на чертеже практически невозможно. Поэтому приходится прибегать к изображению обмоток в виде схем.
Преимущественно пользуются двумя основными способами изображения обмоток на схемах.
При первом способе цилиндрическую поверхность сердечника вместе с обмоткой (а у коллекторных машин — вместе с коллектором) как бы мысленно разрезают по образующей и разворачивают на плоскость чертежа. Такого типа схемы называются развернутыми, или схемами-развертками (рис. 2.1).
Рис. 2.1. Развернутая схема трехфазной однослойной концентрической обмотки с z = 24, 2р = 4.
При втором способе обмотку как бы проектируют на плоскость, перпендикулярную оси сердечника, показывая вид обмотки с торца (для коллекторных машин обычно со стороны коллектора). Проводники (или активные стороны секций и катушек), расположенные в пазах па поверхности сердечника, изображают кружочками и показывают торцевые (лобовые) соединения обмотки. При необходимости изображают не только видимые с данной стороны торцевые соединения обмотки, но и размещенные с обратной стороны сердечника невидимые лобовые части, причем их изображение в этом случае выносится за окружность сердечника. Схемы такого типа называют торцевыми, или круговыми (рис. 2.2).
Рис. 2.2. Торцевая схема обмотки m = 3, z = 24, 2р = 4.
Торцевая и развернутая схемы обмоток:
Наиболее распространены схемы, выполненные по первому способу. Они легче читаются и более наглядны. Для облегчения чтения и выполнения торцевых схем их выполняют упрощенным способом (рис. 2.3). Но даже после этого для обмотчика, не имеющего достаточного опыта работы с торцевыми схемами, они кажутся непонятными и неудобочитаемыми. В развернутых схемах расположение катушек и катушечных групп, соединение катушек и катушечных групп выглядит более реально и понятно.
Рис. 2.3. Торцевая схема при 2р = 4, а = 1.
Схемы дают достаточно четкое представление об устройстве и размещении на сердечнике всех элементов обмотки и соединений между ними. На схемах в основном изображают лишь проводники обмотки, стараясь по возможности опустить все остальные детали, загромождающие схему и затрудняющие ее чтение. Необходимые дополнительные технические данные приводятся на схемах в виде надписей.
Катушка, или секция на схеме изображается одной линией независимо от того, намотана она в один провод или в несколько параллельных проводов, состоит из одного витка или является многовитковой. На развернутой схеме секция или катушка изображаются в виде замкнутой, напоминающей действительную конфигурацию секции (катушки) фигуры, от которой ответвляются выводы.
В развернутых схемах двухслойных обмоток стороны катушек или секций, лежащие ближе к воздушному зазору, т. е. в верхнем слое паза, изображают сплошными линиями, а стороны, лежащие в нижнем слое, — штриховыми (пунктирными). Иногда (в книгах старых изданий) активные стороны катушек в обоих слоях паза изображают сплошными линиями, но те стороны, что лежат в верхнем слое, располагают слева, а те, что лежат в нижнем слое, — справа.
На схемах трехфазных обмоток провода разных фаз могут изображаться различающимися между собой линиями, например сплошными, штриховыми и штрихпунктирными, линиями разной расцветки или разной толщины, двойными линиями с разной штриховкой между ними.
На схемах обычно указывают номера пазов, номера коллекторных пластин, могут быть также обозначены номера секций и их сторон, номера и маркировка выводных концов катушечных групп, фаз обмотки, указаны направления токов, фазные зоны, полюса магнитного поля и т. д. (рис. 2.4 — 2.6).
Рис. 2.4. Развернутая схема двухслойной обмотки при z = 24, 2р = 4, q = 2.
Рис. 2.5. Изображение катушечных групп на схемах: а — развернутой, б – условной.
Рис. 2.6. Условные схемы двухслойной обмотки статора: а — для трех фаз при 2р = 2; б — для одной фазы при 2р = 2, в — для одной обмотки статора при 1р = 4.
Схемы необходимы не только при изучении принципа работы обмоток, их устройства, свойств и особенностей, но также и для выполнения обмоточных работ. Не имея схемы и не сверяясь с ней в процессе работы, трудно выполнить обмотку, поэтому перед началом ремонта обмотки надлежит составить ее схему или найти в справочнике аналогичную.
Упрощенные торцевые схемы:
Следует отметить, что полные развернутые и торцевые схемы сложных многополюсных обмоток с большим числом пазов получаются очень громоздкими и трудными для чтения.
В этих случаях в процессе выполнения обмоток, элементы которых повторяются, часто используют практические развернутые схемы, где изображена, например, лишь одна фаза (иногда часть фазы) трехфазной обмотки или несколько секций обмотки коллекторной машины. Широко используются также упрощенные торцевые схемы, где целые катушечные группы изображаются в виде части дуги с обозначениями выводов, а более мелкие элементы обмотки не изображают или изображают на схеме отдельно. Упрощенные торцевые схемы удобны при выполнении соединений между катушечными группами в сложных обмотках.
Шаговый двигатель
Шаговый двигатель представляет собой устройство, преобразующее электрическую энергию в механическую. По конструкции это бесколлекторный синхронный мотор с ротором, совершающим дискретные перемещения с фиксацией положения после каждого смещения. Величина шага строго определена, что позволяет вычислять абсолютную позицию ротора, подсчитав количество шагов.
Принципы действия биполярных и униполярных шаговых двигателей
Биполярный
Основные элементы шагового двигателя – ротор и статор. Первый представляет собой постоянный двухполюсный магнит. Он располагается на валу устройства. Статор – это замкнутый магнитопровод в виде кольца, он состоит из двух обмоток, половинки которых находятся на противоположных полюсах. На обмотке АВ – вертикально размещенные, на СD – горизонтально расположенные.
- При подаче напряжения на АВ появляется магнитное поле статора. Сверху полюс N, внизу S. Так как разноименные полюса притягиваются, ротор двигателя займет положение, при котором ось его магнитного поля совпадет с осью работающих АВ. Такое расположение ротора двигателя является очень устойчивым, если попытаться его сдвинуть, возникнет сила, которая будет его возвращать назад.
- Напряжение с обмотки АВ снимается и подается на обмотку CD, в результате чего возникает магнитное поле, в котором полюса расположены горизонтально – справа N, а слева S. Соответственно, постоянный магнит ротора расположится по горизонтальной оси, проделав минимальный путь – повернувшись на четверть оборота. Это будет шагом двигателя.
- Каждая последующая коммутация (со сменой полярности при подключении обмотки) заставит ротор поворачиваться на одну четвертую окружности. На полный оборот потребуется четыре шага. Частота вращения пропорциональна частоте переключения фазных обмоток. Если подключать фазы, меняя полярность в противоположной последовательности, ротор шагового двигателя будет вращаться в обратную сторону.
Униполярный
Выше был описан принцип работы биполярного шагового двигателя – у него для каждой фазы предусмотрено две обмотки. Чтобы менять магнитное поле, необходимо каждую обмотку:
- отключить от источника электротока,
- подключить в прямой полярности,
- подключить в обратной полярности.
Осуществить коммутацию позволяет мостовой драйвер, который представляет собой сложную микросхему. Такой вариант подходит, если ток коммутации не превышает 2 А. Решить вопрос с управлением биполярным двигателем значительно сложнее при потребности в больших коммутационных токах. Значительно проще менять магнитное поле в статоре шагового двигателя, если использовать устройство с униполярными обмотками. В этом случае один вывод у всех четырех обмоток подсоединен к плюсовому выводу, а А, В, С и D последовательно подсоединяются к минусовому сигналу. В результате при каждой коммутации создается магнитное поле, заставляющее ротор двигателя повернуться. Коммутация по такому принципу обеспечивается четырьмя ключами, которые замыкают обмотки на землю. Управление ключами обычно осуществляется с выводов микроконтроллера.
При выборе шагового двигателя следует учитывать, что биполярный, при тех же габаритах, что и униполярный, обеспечивает больший крутящий момент. Выигрыш достигает 40 %. Это связано с тем, что в шаговом униполярном двигателе задействуется одна обмотка, а в биполярном две. Преимуществом устройства с одной обмоткой является простое управление.
Виды шаговых двигателей
Существует несколько разновидностей. К наиболее востребованным относятся модели с переменным магнитным сопротивлением, с постоянным магнитом и гибридные.
Устройства с переменным магнитным сопротивлением
Такие шаговые двигатели не имеют постоянных магнитов в роторе. Для изготовления ротора зубчатой формы используется магнитомягкий материал. Его вращение обеспечивается за счет замыкания магнитного поля статора через зубцы, располагающиеся вблизи полюсов. Зубцы к полюсам притягиваются и ротор поворачивается. Шаговые двигатели с переменным магнитным сопротивлением имеют небольшой крутящий момент в сравнении с моделями других типов при тех же габаритах. Это ограничивает сферу их применения.
Устройства с постоянными магнитами
На примере такого устройства выше разъяснялся принцип работы шаговых двигателей. В реальности роторы таких двигателей имеют несколько постоянных магнитов. От их количества зависит число шагов, за которое ротор выполняет полный оборот. Максимальное значение – 48, угол шага при этом составляет 7,5 градусов.
Гибридные устройства
В конструкции шаговых гибридных двигателей присутствует и зубчатый ротор, и постоянные магниты. Функционирует устройство по тому же принципу, что и двигатель с постоянными магнитами, но гибридный вариант отличается большим числом полюсов. За счет такого количества полюсов у гибридных шаговых двигателей больший момент, выше скорость и меньше величина шага. Максимальное число на один оборот может доходить до 400, при этом угол шага составляет 0,9 градусов. Гибридные устройства сложнее в изготовлении и дороже шаговых устройств других типов, но благодаря высокой функциональности пользуются спросом.
Особенности управления
Для управления двигателем с дискретным движением ротора используются следующие режимы: полношаговый, полушаговый и микрошаговый.
Полношаговый режим
При таком способе двигателем производится попеременная коммутация фаз. При этом к источнику напряжения фазы подключаются попеременно без перекрытия. Точки равновесия ротора при таком управлении совпадают с полюсами статора. К недостаткам полношагового режима относят то, что в каждый момент времени у биполярного двигателя используется половина обмоток, а у униполярного лишь четверть. Если подключить две фазы на полный шаг, то ротор будет зафиксирован между полюсами статора благодаря подаче питания на все обмотки. При этом увеличивается крутящий момент шагового двигателя, а положение ротора в состоянии равновесия смещается на полшага. Угол шага при этом остается неизменным.
Полушаговый режим
Если каждый второй шаг включать одну фазу, а между этим включать сразу две, можно увеличить количество перемещений на один оборот в два раза. Такая коммутация, соответственно, в два раза уменьшает угол шага. При этом достичь полного момента в полушаговом режиме невозможно. Режим активно используется, так как позволяет простым способом вдвое увеличить число шагов двигателя. Важно учитывать, что при снятии напряжения со всех фаз в полношаговом и полушаговом режиме ротор остается в свободном состоянии и может произойти его смещение при механических воздействиях. Для фиксации ротора требуется в обмотках двигателя формировать ток удержания. Обычно его значение намного меньше номинального. Благодаря способности шагового двигателя фиксировать положение ротора при остановке отсутствует необходимость использовать тормозную систему, фиксаторы и иные приспособления.
Микрошаговый режим
Чтобы максимально увеличить число шагов двигателя, используется микрошаговый режим. Для этого требуется включить две фазы и распределить ток обмоток неравномерно. При смещении магнитного поля статора относительно полюсов смещается и сам ротор. У диспропорции токов между рабочими фазами двигателя обычно наблюдается дискретность, которая определяет величину микрошага. Количество микрошагов на один оборот ротора шагового двигателя может составлять более 1 000. Устройство, работающее в таком режиме, можно максимально точно позиционировать. Однако данный способ управления является достаточно сложным.
Основные достоинства
К достоинствам шаговых двигателей относят:
- точное позиционирование, которое не требует обратной связи. Угол поворота определяется числом электрических импульсов;
- полный крутящий момент, который двигатель обеспечивает при снижении скорости вращении и до полной остановки;
- фиксацию положения шагового двигателя при помощи тока удержания;
- высокую точность регулировки скорости вращения без необходимости использования обратной связи;
- быстрый старт и остановку двигателя, реверс;
- высокую надежность. Устройства долговечны благодаря отсутствию коллекторных щеток.
Основные недостатки
К недостаткам шаговых двигателей можно отнести:
- относительно невысокие скорости вращения;
- сложную систему управления;
- риск эффекта резонанса;
- риск потери позиционирования ротора шагового двигателя под воздействием механических перегрузок;
- низкую удельную мощность.
Характеристики
Двигатель шагового типа является сложным механическим и электротехническим устройством. Список основных характеристик, которые следует учитывать при выборе устройства, включает:
- сопротивление обмотки фазы. Показатель сопротивления обмотки при работе на постоянном токе;
- число полных шагов за один оборот ротора. Это основной параметр шагового двигателя, который определяет точность позиционирования, плавность движения, разрешающую способность;
- угол полного шага. Это величина угла, на который поворачивается ротор за одно перемещение. Для расчета можно разделить 360° на количество шагов;
- номинальный ток. Наибольшее значение тока, при котором двигатель может работать неограниченно долгое время;
- номинальное напряжение. Максимально допустимое постоянное напряжение на обмотке при статическом режиме шагового двигателя;
- сопротивление изоляции. Величина сопротивления между корпусом и обмотками;
- момент инерции ротора. Чем меньше инерционность ротора, тем он быстрее разгоняется;
- крутящий момент. Для шагового двигателя это ключевой механический параметр. Указывается максимальное значение для конкретной модели двигателя;
- пробивное напряжение. Показатель минимального напряжения, при котором возникает пробой изоляции между корпусом и обмотками;
- индуктивность фазы. Данный параметр принимают во внимание, если от двигателя требуется высокая скорость вращения. От него зависит скорость увеличения тока в обмотке. Если фазы следует переключать с высокой частотой, необходимо увеличивать напряжение для быстрого нарастания тока;
- удерживающий момент. Это показатель крутящего момента при остановленном шаговом двигателе и при двух фазах, запитанных номинальным током.
Сфера применения
Шаговые двигатели рассчитаны на использование в составе устройств с дискретным управлением, где необходимо точно позиционировать исполнительные механизмы. Также они применяются в промышленном оборудовании с программным управлением, где требуется обеспечить непрерывное движение по заданной траектории и импульсное влияние исполнительными механизмами. Ротор шагового двигателя способен поворачиваться на заданный угол и на определенное количество оборотов вокруг своей оси. Благодаря этому шаговые устройства позволяют позиционировать считывающие головки проигрывателей оптических дисков, дисковых накопителей, печатающих головок сканеров, принтеров и иных устройств. Такие двигатели широко используются не только на производстве и в составе бытовой техники. Эти устройства востребованы радиотехниками, робототехниками, мастерами-любителями, изготавливающими самодельные станки с ЧПУ, движущиеся устройства и т. д. Для управления применяются специально разработанные контроллеры либо сложные электронные схемы. Управлять импульсными сигналами, заставляющими двигатель работать в заданном режиме, также можно через порт компьютера.
Как определить начало и конец обмоток электродвигателя: обзор методик
Часто возникают затруднения при подключении электродвигателя после ремонта. Далеко не все ремонтные организации маркируют начало и конец обмоток 3-х фазного двигателя. Завод изготовитель в клеммной колодке маркирует контакты буквами С1- С6. Эта маркировка принята в нашей стране. По международному стандарту используются буквы латинского алфавита. Отсутствие маркировки может спровоцировать выход из строя двигателя при включении в сеть. Чтобы этого не произошло, необходимо знать, как определить начало и конец обмоток электродвигателя. Об этом мы сейчас и расскажем читателям сайта Сам Электрик.
Следует отметить, что в данном случае электродвигатель можно представить как трансформатор. А это значит, что неважно, с какой стороны начало или конец обмотки. Главное, они не должны включаться встречно.
Существует несколько методов распознавания. Для этого необходимы приборы:
- мультиметр или тестер;
- понижающий трансформатор;
- контрольная лампочка.
- Метод определения с помощью тестера
- Метод развернутого треугольника
- Соединение звездой
- Определение с помощью батарейки
- Определение рабочей и пусковой обмоток двигателя на 220 Вольт
- Двигатели постоянного тока
Метод определения с помощью тестера
Прежде чем начать работу, необходимо подготовить рабочее место. Соблюсти все правила электробезопасности и не забывать, что работа с электричеством требует предельной концентрации внимания и аккуратности. Выполним работу способом трансформации.
Работы выполняются в следующей последовательности:
- С помощью тестера находим выводы обмоток и помечаем их кембриками, подписав, например, первая обмотка помечается С1-С4, вторая С2-С5, третья С3-С6.
- Соединяем две обмотки последовательно. На них подается пониженное напряжение с трансформатора.
- На третьей произведем замеры напряжения. При согласованном включении, тестер будет показывать некоторое напряжение. Величина зависит от уровня напряжения, поступающего с трансформатора. При встречном включении, тестер будет показывать минимальное значение напряжения.
- Маркируем соответствующими образом обе обмотки.
- Разбираем схему и соединяем третью обмотку с любой другой. Подаем напряжение от трансформатора и производим замеры. Схема показана на рисунке снизу. Однако, на схеме подается опасное напряжение 220 вольт. В нашем случае мы подаем пониженное напряжение с трансформатора.
- По аналогии с предыдущими измерениями определяем начало и конец третьей обмотки. Маркируем.
- После определения и маркировки проводов, можно соединять двигатель звездой или треугольником и подключать к сети. При этом двигатель не должен издавать повышенный шум и нагреваться. Если это происходит, вы ошиблись в определении начала и конца обмоток. Если все правильно подключено, двигатель работает ровно и не нагревается.
Понижающий трансформатор нужен для ограничения тока в обмотках. Можно обойтись без него, но для ограничения тока, последовательно катушкам включают контрольную лампочку небольшой мощности.
Не стоит рисковать, подавая 220 вольт на обмотки без ограничения тока. В этом случае велика вероятность выхода двигателя из строя. Проще говоря, можно «сжечь» обмотки.
Метод развернутого треугольника
Существует более простой метод определения обмоток при отсутствии маркировки. При подключении треугольником. Это так называемый метод развернутого треугольника. Для определения понадобятся приспособления, применяемые в первом случае.
Работу выполняют в следующей последовательности:
- Мультиметром находят обмотки.
- Маркируют в произвольном порядке.
- Соединяют все три катушки последовательно.
- Подают пониженное напряжение.
- Производят замеры напряжения на обмотках. При правильном соединении, напряжение на обмотках должны совпадать. Т.е. U1=U2=U Если на одной из них значение отличается, концы этой обмотки следует поменять местами.
- На этом проверка заканчивается. Двигатель можно монтировать на рабочее место.
На рисунке показана схема измерений методом треугольника.
Если отсутствует мультиметр, проверить напряжение можно с помощью лампы. Уровень свечения должен быть во всех случаях одинаков. Если на одной из обмоток он отличается, то провода катушки меняют местами.
Соединение звездой
Этот метод применяется в исключительных случаях. После того, как обмотки будут найдены, их соединяют звездой и кратковременно подключают к сети. Если провода соединены неправильно, двигатель начинает гудеть и греться.
После отключения переключают одну из обмоток и опять подключают к сети. Таких переключений может быть не более трех. Следует запомнить, включают двигатель кратковременно, не более 2 секунд. Если оставить включенным на большее время, двигатель наверняка выйдет из строя.
Определение с помощью батарейки
Для этого метода потребуется тестер и батарейка. Это наиболее простой способ. Методика поиска с помощью батарейки заключается в следующем:
- С помощью тестера находим катушки на асинхронном двигателе.
- К одной из них подключается прибор.
- К выводам другой подключаем кратковременно несколько раз батарейку. Если в момент подачи напряжения тестер показывает отрицательное значение, это говорит о встречном включении обмоток.
- Проверяем поочередно все катушки и маркируем их соответствующим образом.
Схема измерений показана на рисунке снизу.
Аналогичным образом можно проверить с помощью аккумулятора. Разница заключается в том, что вместо батарейки применяется аккумулятор.
Определение рабочей и пусковой обмоток двигателя на 220 Вольт
Часто возникает необходимость определения рабочей и пусковой обмотки в однофазном двигателе. Это происходит по причине утраты надписи или после ремонта.
У двигателя имеются четыре провода. Методика проверки заключается в следующем:
- Визуально осматриваем провода. Если провода имеют разное сечение, то с меньшим сечением будет пусковая;
- Однако, стоит перепроверить. Замеряем сопротивление. Обмотка, имеющая меньшее значение будет рабочей, а вторая пусковая.
- Производим маркировку проводников.
Схема замеров показана на рисунке снизу.
При наличии обмоток с одинаковым сопротивлением, любую обмотку можно использовать как рабочую или пусковую. Направление вращение меняют заменой местами обмоток.
Часто встречаются однофазные электродвигатели с тремя проводами. В этом случае тестером замеряют сопротивления. Получаем значения, например, 52 Ом, 18 Ом и 34 Ома. Это значит, что обмотка, имеющая меньшее значение (18 Ом) является рабочей, а вторая 34 Ома – пусковая. 52 Ома — суммарное сопротивление обеих катушек.
На рисунке снизу представлена схема двигателя с тремя выводами:
Двигатели постоянного тока
У двигателей постоянного тока обычно бывает два провода. Поэтому при подаче напряжения он начинает вращаться в определенную сторону. Если вращение не совпадает, в этом случае меняют полярность.
Аналогичным образом можно подключить шаговый двигатель. Например, имеются четыре вывода. Катушки у такого двигателя имеют одинаковое сопротивление, а провода, как правило, имеют цветные.
Подключаем к драйверу в произвольном порядке, смотрим, в какую сторону происходит вращение. Если необходимо поменять направление вращения, провода меняют местами.
Например, подключили — белый, синий, красный, черный. Для смены направления соединим – черный, красный, синий, белый.
Вот мы и рассмотрели, как определить начало и конец обмоток электродвигателя. Если остались вопросы по этой теме, задавайте их в комментариях под статьей!