1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель постоянного тока независимого возбуждения

Виды возбуждения и схемы включения двигателей постоянного тока.

Двигатели постоянного тока в зависимости от способов их воз­буждения, как уже отмечалось, делятся на двигатели с независимым, параллельным (шунтовым), последовательным (сериесным) и смешанным (компаундным) возбуждением.

Двигатели независимого возбуждения, рис.8,а, требуют два источника питания. Один из них необходим для питания обмотки якоря (выводы Я1 и Я2 ), а другой — для создания тока в обмотке возбуждения (выводы обмотки Ш1 и Ш2). Дополнительное сопротивление в цепи обмотки якоря необходимо для уменьшения пускового тока двигателя в момент его включения.

С независимым возбуждением выполняются в основном мощные электрические двигатели с целью более удобного и экономичного регулирования тока возбуждения. Сечение провода обмотки возбуждения определяется в зависимости от напряжения ее источника питания. Особенностью этих машин является независимость тока возбуждения, а соответственно и основного магнитного потока, от нагрузки на валу двигателя.

Двигатели с независимым возбуждением по своим характеристикам практически совпадают с двигателями параллельного возбуждения.

Двигатели параллельного возбуждения включаются в соответствии со схемой, показанной на рис.8,6. Зажимы Я1 и Я2относятся к обмотке якоря, а зажимы Ш1 иШ2 — к обмотке возбуждения (к шунтовой обмотке). Переменные сопротивления и предназначены соответственно для изменения тока в обмотке якоря и в обмотке возбуждения. Обмотка возбуждения этого двигателя выполняется из большого количества витков медного провода сравнительно малого сечения и имеет значительное сопротивление. Это позволяет подключать ее на полное напряжение сети, указанное в паспортных данных.

Особенностью двигателей этого типа является то, что при их работе запрещается отсоединять обмотку возбуждения от якорной цепи. В противном случае при размыкании обмотки возбуждения в ней появится недопустимое значение ЭДС, которое может привести к выходу из строя двигателя и к поражению обслуживающего персонала. По той же причине нельзя размыкать обмотку возбуждения и при выключении двигателя, когда его вращение еще не прекратилось. •

С увеличением частоты вращения его следует уменьшать, а при достижении установившейся частоты вращения — вывести

Рис. 8. Виды возбуждения машин постоянного тока,

а — независимого возбуждения , б — параллельного возбуждения,

в — последовательного возбуждения, г — смешанного возбуждения.

ОВШ — обмотка возбуждения шунтовая, ОВС — обмотка возбуждения

сериесная,’ ОВН — обмотка независимого возбуждения, Rд —

Долнительное сопротивление в цепи обмотки якоря, Rв- Дополнительное сопротивление в цепи обмотки возбуждения.

полностью. Отсутствие дополнительного сопротивления в обмотке якоря в момент пуска двигателя может привести к появлению большого пускового тока, превышающего номинальный ток якоря в 10. 40 раз [1,2].

Важным свойством двигателя параллельного возбуждения служит’ практически постоянная его частота вращения при изменении нагрузки на валу якоря. Так при изменении нагрузки от холостого хода до номинального значения частота вращения уменьшается всего лишь на (2.. 8)% [1,12].

Второй особенностью этих двигателей служит экономичное регулирование частоты вращения, при котором отношение наибольшей скорости к наименьшей может составлять 2:1, а при специальном исполнении двигателя — 6:1. Минимальная частота вращения ограничивается насыщением магнитной цепи, которое не позволяет уже увеличивать магнитный поток машины, а верхний предел частоты вращения определяется устойчивостью машины — при значительном ослаблении магнитного потока двигатель может пойти «вразнос» [1,3,4,6].

Двигатели последовательного возбуждения (сериесные) включаются по схеме, рис.8, в. Выводы С1 и С2 соответствуют сериесной (последовательной) обмотке возбуждения. Она выполняется из сравнительно малого числа витков в основном медного провода большого сечения. Обмотка возбуждения соединяется последовательно с обмоткой якоря. Дополнительное сопротивление в цепи обмоток якоря и возбуждения позволяет уменьшить пусковой ток и производить регулирование частоты вращения двигателя. В момент включения двигателя оно должно иметь такую величину, при которой пусковой ток будет составлять (1,5. 2,5)Iн. После достижения двигателем установившейся частоты вращения дополнительное сопротивление выводится, то есть устанавливается равным нулю.

Эти двигатели при пуске развивают большие пусковые моменты вращения и должны запускаться при нагрузке не менее 25% ее номинального значения. Включение двигателя при меньшей мощности на его валу и тем более в режиме холостого хода не допускается. В противном случае двигатель может развить недопустимо большие обороты, что вызовет выход его из строя [1,6,12 ]. Двигатели этого типа широко применяются в транспортных и подъемных механизмах, в которых необходимо изменять частоту врашения в широких пределах.

Двигатели смешанного возбуждения (компаундные), рис.8, г, занимают промежуточное положение ?» между двигателями параллельного и последовательного возбуждения. Большая принадлежность их к тому или другому виду зависит от соотношения частей основного потока возбуждения, создаваемых параллельной или последовательной обмотками возбуждения. В момент включения двигателя для уменьшения пускового тока в цепь обмотки якоря включается дополнительное сопротивление . Этот двигатель обладает хорошими тяговыми характеристиками и может работать в режиме холостого хода.

Читать еще:  Что такое рабочий циклом двигателя

Прямое (безреостатаное) включение двигателей постоянного тока всех видов возбуждения допускается мощностью не более одного киловатта.

6. Обозначение машин постоянного тока.

В настоящее время наиболее широкое распространение получили машины постоянного тока общего назначения серии и наиболее новой серии 4П. Кроме этих серий выпускаются двигатели для крановых, экскаваторных, металлургических и других приводов серии Д. Изготавливаются двигатели и специализированных серий [5,6,8].

Двигатели серий и подразделяются по оси вращения, как это принято для асинхронных двигателей переменного тока серии. Машины серии имеют 11 габаритов, отличающихся по высоте вращения оси от 90 до 315 мм. Диапазон мощностей машин этой серии составляет от 0,13 до 200 кВт для электрических двигателей и от 0,37 до 180 кВт для генераторов. Двигатели серий 2П и 4П рассчитываются на напряжение 110, 220, 340 и 440 В. Их номинальные частоты вращения составляют 750, 1000, 1500,2200 и 3000 об/мин.

Каждый из 11 габаритов машин серии имеет станины двух Длин ( М и L ).

Электрические машины серии имеют лучшие некоторые технико — экономические показатели по сравнению с серией . 1 рудоемкость изготовления серии по сравнению с снижена в 2,5. 3 раза.’ При этом расход меди снижается на 25. 30 %. По ряду конструктивных особенностей, в том числе по способу охлаждения, по защите от атмосферных воздействий, по использованию отдельных деталей и узлов машины серии унифицированы с асинхронными двигателями серии иАИ [10,11].

Обозначение машин постоянного тока (как генераторов, так и двигателей) представляется следующим образом:

2ПХ1Х2ХЗХ4 ,

где — серия машины постоянного тока;

XI — исполнение по типу защиты: Н — защищенное с само­вентиляцией, Ф — защищенное с независимой вентиля­цией, Б — закрытое с естественным охлаждением, О — закрытое с обдувом от постороннего вентилятора;

Х2 — высота оси вращения ( двухзначное или трехзначное число) в мм;

ХЗ— условная длина статора: М — первая, L — вторая, Г — с тахогенератором;

Х4 — климатическое исполнение и категория размеще­ния: У — умеренный климат, Т — тропический климат.

В качестве примера можно привести обозначение двигателя 2ПН112МГУ — двигатель постоянного тока серии , защищенного исполнения с самовентиляцией Н,112 высота оси вращения в мм, первый размер статораМ, укомплектован тахогенератором Г, используется для умеренного климатаУ.

По мощностям электрические машины постоянного тока условно могут быть подразделены на следующие группы [12]:

Микромашины ………………………. меньше 100 Вт,

Мелкие машины ………………………от 100 до 1000 Вт,

Машины малой мощности…………..от 1 до 10 кВт,

Машины средней мощности………..от 10 до 100 кВт,

Крупные машины……………………..от 100 до 1000 кВт,

Машины большой мощность……….более 1000 кВт.

По номинальным напряжениям электрические машины подразделяются условно следующим образом:

Низкого напряжения…………….меньше 100 В,

Среднего напряжения ………….от 100 до 1000 В,Высокого напряжения

По частоте вращения машины постоянного тока могут быть представлены как:

Непрерывная модель электродвигателя постоянного тока независимого возбуждения

В данном параграфе на примере двигателя постоянного тока независимого возбуждения (ДПТ НВ) рассмотрим создание S-функции для модели реального объекта.

Математическое описание ДПТ НВ

Двигатель постоянного тока независимого возбуждения (рис. 16.9), описывается следующей системой дифференциальных и алгебраических уравнений в абсолютных единицах:

(1)
(2)
(3)
(4)

u — напряжение на якорной обмотке двигателя,e — электродвижущая сила (ЭДС) якоря,i — ток якоря,Ф — поток, создаваемый обмоткой возбуждения,M — электромагнитный момент двигателя,MС — момент сопротивления движению, — скорость вращения вала двигателя,R — активное сопротивление якорной цепи,L — индуктивность якорной цепи,J — суммарный момент инерции якоря и нагрузки,С — коэффициент связи между скоростью и ЭДС,СМ — коэффициент связи между током якоря и электромагнитным моментом.

Рис. 16.9 Двигатель постоянного тока с независимым возбуждением.

С точки зрения будущей модели, входными воздействиями являются напряжения якоря u и момент сопротивления движению MС , выходными переменными — электромагнитный момент двигателя M и скорость вращения вала двигателя , а переменными состояния — переменные стоящие под знаком производной: ток якоря i и скорость вращения вала двигателя . Остальные переменные, входящие в состав уравнений (1) — (4) являются параметрами, численные значения которых, необходимо будет задавать при проведении расчетов.

Преобразуем дифференциальные уравнения (1) и (2) к явной форме Коши и выполним подстановку. Система уравнений примет вид:

(5)
(6)
(7)
(8)

Последнее уравнение есть отражение того факта, что переменная состояния является также и выходной переменной.

Введем «машинные» переменные. Входные переменные: , . . Выходные переменные: , . , Переменные состояния: , .

Тогда уравнения (5) — (8) примут вид:

(9)
(10)
(11)
(12)

Перепишем систему уравнений в матричной форме:

(13)
(14)
, , .

Отметим, что в получившейся системе уравнений входные переменные не участвуют в формировании выходных переменных (матрица обхода D — отсутствует) и, следовательно, параметр sizes.DirFeedthrough, определяемый при инициализации S-функции должен быть задан равным нулю.

Читать еще:  Что находится под крышкой двигателя

Пример S-функции для ДПТ НВ

Для создания S-функции для ДПТ НВ за основу взят файл примера модели непрерывной системы csfunc.m . Принципиальные отличия нового файла от образца сводятся к следующему:

1. Для расчета матриц уравнений пространства состояния A, В и С используются параметры передаваемые в S-функцию через окно диалога блока S-function. Эти параметры (L,R,J,Cm,Cw,Fi) записываются в конце списка параметров в заголовке S-функции : function [sys,x0,str,ts] = dpt_sfunc_1(t,x,u,flag,L,R,J,Cm,Cw,Fi)

2. Для исключения одинаковых (повторяющихся) вычислений расчет матриц A, В и С выполняется в методе mdlInitializeSizes. Для этого параметры блока (L,R,J,Cm,Cw,Fi) передаются в метод mdlInitializeSizes через его заголовок: [sys,x0,str,ts] = mdlInitializeSizes(L,R,J,Cm,Cw,Fi) Поскольку инициализация модели происходит лишь один раз, то и расчет матриц A, В и С будет выполнен также один раз, что значительно повысит скорость моделирования.

3. Передача рассчитанных в mdlInitializeSizes матриц выполняется с помощью глобальных переменных. Для этого объявления вида: global A B C; выполнены в теле S-функции, методе mdlInitializeSizes (где выполняется расчет этих матриц), а также методах mdlDerivatives и mdlOutputs (где эти матрицы используются для расчетов).

4. Поскольку в уравнения пространства-состояния матрица D отсутствует (входные переменные не участвуют в формировании выходных переменных), то параметр sizes.DirFeedthrough в методе mdlInitializeSizes задан равным нулю.

Ниже приводится текст S-функции dpt_sfunc_1 (файл dpt_sfunc_1.m):

function [sys,x0,str,ts] = dpt_sfunc_1(t,x,u,flag,L,R,J,Cm,Cw,Fi)% DPT_SFUNC_1 Пример S-функции для моделирования двигателя постоянного тока% независимого возбуждения.%% В примере выполняется моделирование с помощью уравнений% пространства-состояния:% x’ = Ax + Bu% y = Cx + Du%% Copyright 2002, Chernykh ILya% $Revision: 1.8% Автор: Черных И.В.%% Параметры S-функции, передаваемые через окно диалога блока S-function:%% L — Индуктивность цепи якоря % R — Активное сопротивление цепи якоря % J — Момент инерции% Cm — Коэффициент связи между моментом и током% Cw — Коэффициент связи между потоком и скоростью вращения вала% Fi — Поток, создаваемый обмоткой возбуждения%global A B C; % Объявление глобальными переменных, необходимых для % расчетов внутри функций mdlDerivatives и mdlOutputs . % Сами матрицы расчитываются в методе mdlInitializeSizes . switch flag, % В зависимости от значения переменной flag происходит % вызов того или иного метода: %===============%% Инициализация %%===============% case 0, [sys,x0,str,ts]=mdlInitializeSizes(L,R,J,Cm,Cw,Fi); %====================%% Расчет производных %%====================% case 1, sys=mdlDerivatives(t,x,u); %===========================================%% Расчет значений вектора выходных сигналов %%===========================================% case 3, sys=mdlOutputs(t,x,u); %=========================================%% Неиcпользуемые значения переменной flag %%=========================================% case , sys = []; %======================================%% Неизвестное значение переменной flag %%======================================% otherwise error([‘Unhandled flag = ‘,num2str(flag)]); end% Окончание dpt_sfunc_1 %===============================================================%% mdlInitializeSizes %% Функция инициализации %% Расчет начальных условий, значений вектора шагов модельного %% времени,размерности матриц %%===============================================================% function [sys,x0,str,ts]=mdlInitializeSizes(L,R,J,Cm,Cw,Fi) sizes = simsizes; sizes.NumContStates = 2; % Число непрерывных переменных состояния % В данном случае этот параметр равен 2 % (ток якоря и скорость вращения вала). sizes.NumDiscStates = 0; % Число дискретных переменных состояния % В данном случае этот параметр равен 0, % поскольку модель непрерывная. sizes.NumOutputs = 2; % Число выходных переменных (размерность выходного % вектора). В данном случае этот параметр равен 2 % (скорость вращения и момент на валу). sizes.NumInputs = 2; % Число входных переменных (размерность входного % вектора). В данном случае этот параметр равен 2 % (напряжение на обмотке якоря и момент % сопротивления). sizes.DirFeedthrough = 0; % Прямой проход. Значение параметра равно нулю, % поскольку матрица обхода D — отсутствует (входные % переменные не участвуют в формировании выходных % переменных). sizes.NumSampleTimes = 1; % Размерность вектора модельного времени. sys = simsizes(sizes); x0 = zeros(2,1); % Задание вектора начальных значений переменных % состояния. Начальные условия нулевые. str = []; % Зарезервированный параметр ts = [0 0]; % Матрица из двух колонок, задающая шаг модельного % времени и смещение. % Далее в функцию mdlInitializeSizes добавлены операторы для% вычисления матриц A, B и C уравнений пространства состояния% модели двигателя постоянного тока global A B C; % Объявление глобальными переменных, необходимых для % расчетов внутри функций mdlDerivatives и mdlOutputs. % Расчет матриц А,В и С:%A=[-R/L -Cw*Fi/L Cm*Fi/J 0 ];%B=[1/L 0 0 -1/J];%C=[Cm*Fi 0 0 1];% Окончание mdlInitializeSizes %========================================================================%%mdlDerivatives %% Функция для расчета значений производных вектора состояния непрерывной %% части системы %%========================================================================% function sys=mdlDerivatives(t,x,u)%global A B; % Объявление глобальными переменных, необходимых для % расчетов внутри метода.sys = A*x + B*u; % Окончание mdlDerivatives %========================================================% % mdlOutputs %% Функция для расчета значений вектора выходных сигналов %%========================================================% function sys=mdlOutputs(t,x,u) global C; % Объявление глобальными переменных, необходимых для % расчетов внутри метода.sys = C*x; % Окончание mdlOutputs

На рис.16.10 показаны модели двигателя постоянного тока на базе S-функции и с использованием стандартных блоков. Результаты расчета для обеих моделей идентичны. Окно диалога блока S-function изображено на рис. 16.11.

Большая Энциклопедия Нефти и Газа

Двигатель — постоянный ток — независимое возбуждение

Двигатель постоянного тока независимого возбуждения , скорость вращения которого регулируется напряжением на якоре. [1]

Двигатели постоянного тока независимого возбуждения используются в механизмах ЭТУ в тех случаях, когда необходимо глубокое регулирование скорости при высоком качестве переходных процессов. [2]

Двигатель постоянного тока независимого возбуждения питается через две группы тиратронов. Одна пара TI и Г3 служит для питания обмотки якоря, вторая пара Т3 я Т — для питания обмотки возбуждения. [3]

Читать еще:  Peugeot 206 датчик температуры двигателя

Двигатели постоянного тока независимого возбуждения применяются, главным образом там, где по условиям работы требуется глубокое и плавное регулирование скорости, а также в тех случаях, когда необходима работа привода с низкой скоростью. [4]

Для двигателей постоянного тока независимого возбуждения при постоянной величине магнитного потока ф фном момент пропорционален току, поэтому можно пользоваться эквивалентным моментом. [6]

Для двигателя постоянного тока независимого возбуждения — это скорость идеального холостого хода, определяемая соотношением f / max / C, для гидропривода — скорость, развиваемая исполнительным органом при полном открытии каналов в распределителе, полном использовании давления питания и отсутствии силы сопротивления. [7]

Для двигателя постоянного тока независимого возбуждения величины U , R и Ф постоянны; поэтому для данной точки присоединения реле, когда Rx также постоянно, зависимость Upn — f ( w) линейна. [9]

Регулирование скорости двигателя постоянного тока независимого возбуждения изменением магнитного потока как в двигательном, так и в генераторном режимах представляет собой однозонное регулирование вверх. Поскольку номинальное значение магнитного потока является наибольшим, то изменение потока возможно лишь в сторону уменьшения по сравнению с номинальным. Последнее приводит к увеличению скорости двигателя во всех режимах работы. [10]

Механические характеристики двигателя постоянного тока независимого возбуждения , управляемого тиристор-ным выпрямителем, напоминают характеристики в системе Г — Д ( рис. 4.13), однако они отличаются рядом особенностей. [12]

Схема включения двигателя постоянного тока независимого возбуждения при импульсном регулировании напряжения показана на рис. 4.18, а. Диод V, шунтирующий якорь двигателя, создает цепь для протекания тока якоря под действием ЭДС самоиндукции, возникающей в индуктивности обмотки якоря в период разомкнутого состояния ключа / С. Это создает условия для непрерывного протекания тока якоря, что существенно уменьшает его пульсации и устраняет коммутационные перенапряжения на ключе К, и обмотке якоря. [13]

Такую характеристику имеют двигатели постоянного тока независимого возбуждения , рабочая часть характеристики асинхронного двигателя — до точки критического скольжения. [14]

Составим структурную схему двигателя постоянного тока независимого возбуждения при скорости выше основной и при управлении по якорю и по потоку. [15]

Генераторы независимого возбуждения

Определение. Генераторами независимого возбуждения называются генераторы постоянного тока, обмотка возбуждения которых питается постоянным током от постороннего источника электрической энергии (сеть постоянного тока, выпрямитель, аккумулятор и др.) или у которых магнитный поток создается постоянными магнитами.

Схема генератора. Схема генератора независимого возбуждения изображена на рис. 1.16. Якорь генератора приводится во вращение от приводного двигателя ПД.

Цепь якоря электрически не соединена с цепью воз­буждения, поэтому ток нагрузки I и ток якоря Iя – это один и тот же ток (I = Iя). Цепь возбуждения питается от постороннего источника постоянного тока. В нее включают регулировочный реостат R p , предназначенный для регулирования тока возбуждения Iв, магнитного потока возбуждения и в конечном счете ЭДС и напряжения генератора.

Характеристика холостого хода (рис. 1.17). Характеристика снимается при плавном увеличении тока возбуждения, а затем при его плавном уменьшении при n = nном = const . Вторая ветвь характеристики идет несколько выше первой и при токе Iв = 0 в машине есть некоторая ЭДС E , называемая остаточной. Вид характеристики холостого хода объясняется тем, что при n = const E = CenФ пропорциональна магнитному потоку Ф, а последний – индукции В, т.е. ее форма такая же, как у кривой гистерезиса. За расчетную обычно принимают характеристику, проходящую между ветвями экспериментальной кривой (штриховая кривая на рис. 1.17). Остаточная ЭДС E создается за счет индукции, остающейся в магнитной цепи статора после отключения тока возбуждения. Машина рассчитывается таким образом, чтобы в номинальном режиме рабочая точка (Iв.ном, Еном) находилась на «колене» характеристики холостого хода, этим обеспечивается получение достаточно высокой ЭДС при относительно небольшом токе возбуждения.

Внешняя характеристика. Внешняя характеристика генератора U = f(I) при IB = const и n = nном = const (рис. 1.18) характеризует влияние тока нагрузки генератора на напряжение на его выводах. Напряжение U = E RЯ I при увеличении нагрузки от нуля до номинальной плавно уменьшается на 5 – 15% по двум причинам: из-за падения напряжения на сопротивлении якоря RЯ I и уменьшения ЭДС Е из-за размагничивающего влияния реакции якоря (кривые 1и 1а). При перегрузке машины ток в якоре становится недопустимо большим и напряжение сильно падает (кривая 1а).

При коротком замыкании ток в якоре Iк примерно в 10 раз больше номинального (он ограничивается только сопротивлением цепи якоря 1к = Е / RЯ) и если быстро не отключить генератор, то его коллектор и обмотка выйдут из строя.

Регулировочная характеристика. Регулировочная характеристика Iв = f(I) при U = const и n = nном = const изображена на рис. 1.19 (кривая 1). Для поддержания постоянства напряжения на выводах якоря в цепь возбуждения включен регулировочный реостат с сопротивлением Rp (рис. 1.16).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector