Что такое форсированный двигатель на мотоцикл
Что такое форсированный двигатель? Только правда и видео материал.
Ну что, если уж начали тему тюнинга двигателя (читаем про закись азота), значит будем ее продолжать. В предыдущей статье я краем затронул переделку двигателя, его изменение в лучшую сторону, для работы с большими нагрузками и оборотами. Как это сделать? Что нужно менять? И как это называется? Предлагаю поговорить про форсирование …
ОГЛАВЛЕНИЕ СТАТЬИ
Для начала давайте начнем с определения.
«Форсированный» двигатель – это агрегат с улучшенными характеристиками, которые раскрывают весь потенциал двигателя и заставляют его работать с другими мощностями. Иногда прибавление в мощности может достигать «начального» значения агрегата, практически без потери ресурса. Например, было 110 л.с. — стало 220 л.с. Однако для такого «форсирования» нужно сменить чуть ли не полмотора.
Простыми словами мы проделываем множество работ, по увеличению полезного действия мотора — уменьшению трения, уменьшению отдачи КПД другим навесным агрегатам, при необходимости турбированию двигателя и т.д.
Способы увеличения производительности двигателя
Далее я вам предлагаю поговорить, о том, как можно «прокачать» свой двигатель. Самые распространенные методы. Однако они не все относятся к форсированию, но их желательно сделать вначале.
Без внесения конструктивных изменений
1) Самым первым и относительно недорогим методом является прошивка блока ЭБУ (чип-тюнинг), вам заменяют стандартную программу на более «мощную». Причем практически без потери ресурса. Таким образом, можно достигнуть до 10% от мощности. Все дело в том, что многие производители реально душат движки в угоду экологии. Прошивка убирает эти ограничения. Небольшое видео.
2) Замена стандартных впускного и выпускного коллекторов. Про это я напишу отдельную статью, а пока скажу — что можно увеличить мощность, просто заменив коллектора. Сейчас на слуху так называемый «паук», прибавляет мощности около 5%.
3) Убрать катализатор. Он тормозит поток отработанных газов, а поэтому если его убрать двигатель задышит в «полную грудь», однако выхлоп станет намного грязнее!
4) Поставить прямоток. Относится также к глушителю, в нем меньше камер, которые глушат звуки, а поэтому выхлоп идет не встречая перегородок, что также прибавляет мощности.
Это самые простые и относительно дешевые методы, дальше приступим собственно к форсированию (усилению) нашего мотора.
Конструктивные изменения
Нужно понимать, что нам нужно менять и усиливать практически все элементы строения мотора, некоторые детали меняются в угоду уменьшения силы трения. Ведь стандартные детали не отличаются низкими показателями. Все работы дорогостоящие и важно понимать — что иногда форсирование может выйти в немалую копеечку, иногда равной стоимости самого агрегата. НУ что поехали:
1) Увеличиваем объем цилиндров. Как горят «американцы»: чем больше объем – тем выше мощность. Это самое элементарное правило. Увеличение происходит при помощи «расточки» блока цилиндров, она должна происходить строго по технологиям! Важно сначала найти подходящие поршни, для большего размера, шатуны и прочие «детали» и только потом растачивать блок. Таким образом — можно добиться хорошего прибавления объема двигателя. Так например, 1,6 литровый вариант легко можно догнать до 1,8, а в некоторых случаях и 2,0 литрового.
2) «Гильзование». Зачастую увеличение объема это всего лишь средство повышение мощности, однако стенки блока остаются все же не из такого прочного металла (сплавы алюминия или чугуна), поэтому при форсировании зачастую устанавливают специальные износостойкие гильзы.
Они как бы вставляются в отверстия блока и «противостоят» нагрузкам при очень высоких оборотах. Справедливости ради стоит отметить, что «гильзование» может примениться и при капитальном ремонте мотора, но это уже совсем другая история.
3) Установка облегченно-усиленного коленвала. Делается он из прочных металлов, выдерживает высокие нагрузки и просто необходим при форсировании. НО вы скажете «усиленный» понятно, а вот почему облегченный?
ДА все просто — здесь вся загвоздка в силе инерции, практически также как с облегченным маховиком. При низких оборотах разница минимальна, но вот уже от 3000 — 4000 оборотов двигатель начинает крутиться веселее, все потому что ему не нужно меньше энергии, чтобы побороть силу инерции, которая в том числе зависит и от веса. Хочется отметить — что не редко «колено» увеличивают для более высокого сжатия топлива и сдвига наполнения цилиндра.
4) Далее как становится понятно, такой коленвал должен быть хорошо защищен при установке. А устанавливается он блок, в специальные «постели» в которые изначально укладывают «вкладыши». Так вот эти вкладыши также могут быть слабым звеном, их также меняют при форсировании на более «надежные».
5) Поршни, шатуны, маслосъемные кольца. Сейчас без преувеличения существует несколько десятков компаний (а может и сотен), которые занимаются производством усовершенствованных поршней и шатунов. Поршни в свою очередь не только делаются из прочного металла, но они еще и облегчаются!
Также верхняя часть может иметь всевозможные причудливые формы – делается это для большего сжатия. Шатуны и «кольца», производятся в комплекте и как обычно также состоят из прочных металлов, ведь кольцо, по сути трется о гильзу или о стенку блока, а поэтому должно выдерживать максимальные нагрузки.
6) Головка блока и распредвалы. Также меняют, основная задача сделать более полное наполнение камеры сгорания – для этого меняют фазы, делают их более широкими.
Можно добиться более высоких оборотов при «верхах». Однако на «низах», двигатель немного «тупеет» поэтому водителю приходится его часто «подкручивать». Важно помнить, что такой распредвал, должен работать в совокупности с измененным коленвалом, иначе невозможно! Вообще с головкой можно провести много различных манипуляций, посмотрите вот этот ролик, очень полезно.
Установка компрессора
Очень эффективный способ поднятия мощности. Многие изначально думают, что установка компрессора и является его – форсированием. Это в корне не верно, как вы уже поняли это комплекс мер.
Однако приводной компрессор (или механический) является важнейшим элементом поднятия производительности. Принцип прост – на автомобиль устанавливается такое оборудование, которое проводится от коленвала. Благодаря нему, можно значительно улучшить крутящий момент двигателя. Про это я постараюсь написать отдельную статью.
ИТОГ
Форсирование двигателя это очень сложная, требующая тонких расчетов работа, которая позволяет достичь высоких результатов производительности и оборотов. Здесь задействованы практически все узлы и агрегаты, даже прошивку вам нужно будет менять! Так что такие работы нужно проводить осознанно, с пониманием зачем вы это делаете! Тогда и производительность двигателя, можно поднять на совершенно новый уровень. Лично видел когда из простых «ВАЗОВ» по 200 с лишнем лошадей выжимали.
Статья получилась большая, может быть сложная для понимания, однако постарался как можно проще объяснить.
НА этом все, искренне ваш АВТОБЛОГГЕР.
(21 голосов, средний: 4,90 из 5)
Что такое форсированный двигатель на мотоцикл
Как форсировать двигатель мопеда
Готовясь к соревнованиям по мотокроссу, многие неопытные гонщики подчас подумывают: не заменить ли мотор? А зачем? Предлагаем вашему вниманию способ увеличения мощности широко применяемых двигателей В-50 (В-501). Форсированный, после обкатки и регулировки на бензине АИ-83 в смеси с авиационным маслом (соотношение 20:1) он развивает мощность до 8 л.с. при 8000 об/мин -1 .
Давайте рассмотрим, как можно форсировать двигатель у мопеда.
Сначала разберем коленчатый вал (рис. 1). Распрессуем палец нижней головки шатуна. Затем двутавровое сечение опилим со стороны впускного окна (сеч. А—А), а всю поверхность отполируем. Для высокооборотного двигателя втулку верхней головки шатуна придется заменить на игольчатый подшипник. Установим ролики диаметром 2 мм, зафиксированные с двух сторон стальными калеными шайбами, ограничивающими сдвиги головки шатуна в бобышках поршня. Длина роликов равна длине его верхней головки. Толщину шайбы «В» (рис. 2) выбираем такой, чтобы зазор между шайбами и бобышками поршня был раввн 0,1 мм. Диаметр отверстия в верхней головке шатуна 14 +0,01 мм доводим до нужного размера с помощью развертки. Поршень подбираем новый, а если такой возможности нет, оставим все как есть, но зазор между пальцем и втулкой увеличим на 0,02—0,03 мм. На 2—3 гонки такой втулки вполне хватит.
Щеки коленчатого вала протачиваем на токарном станке до диаметра 69 +0,1 мм. Затем вытачиваем еще два кольца (рис. 3), которые напрессовываем на щеки с натягом 0,3 мм по горячей посадке. В щеках фрезеруем выемку под нижнюю головку шатуна. Толщина щеки — 10 +0,1 мм. Протачиваем ее по наружному диаметру 78 +0,1 .
Сборку коленчатого вала начинаем с запрессовки пальца и установки шатуна с нижним подшипником, выдерживая наружную ширину щек 35 мм.
В щеках коленчатого вала (рис. 1, вид Б) на радиусе 28 мм сверлим восемь отверстий диаметром 9 мм на глубину 12,5 мм. Зачеканиваем их свинцом. Овальные отверстия заливаем смесью эпоксидной смолы с пенопластовой крошкой. Аналогичную операцию проводим с другой щекой. Проверить их балансировку можно в центрах токарного станка или на двух призмах, установленных горизонтально (рис. 4). Вес балансировочного груза не более 45 г.
Особое внимание уделим доработке картера. С помощью шарошки и электродрели увеличим живое сечение перепускных каналов (рис. 5). Делать это нужно осторожно, так как стенки здесь очень тонкие. Продувочные каналы должны находиться на одном уровне с наружным диаметром щек коленчатого вала (рис. 6). Каналы стандартного исполнения обычно бывают ниже, поэтому их нужно поднять до нужного уровня, заполнив эпоксидной смолой с алюминиевым порошком. Все поверхности тщательно зачистим и заполируем.
Для доработки цилиндра выпрессуем чугунную гильзу. На газовой горелке нагреем цилиндр до 300 °С, с помощью молотка через медную оправку извлечем ее.
Напильником и надфилем выпилим в гильзе окна согласно развертке цилиндра (рис. 7). Продувочные каналы (рис. 8) подгоним по цилиндру в продольном «а» и поперечном «б» сечении.
В алюминиевом цилиндре при помощи шарошек увеличим сечение продувочных каналов по размерам гильзы. Подгоним сечение окон перепускных каналов в плоскости разъема цилиндра и картера (рис. 5). При их расточке необходимо соблюдать симметричность.
Теперь можно приступить к запрессовке гильзы. Ставим их на ровную поверхность. Цилиндр нагреем до 300—350 °С и наденем на гильзу до полной посадки, следя за совпадением продувочных каналов с окнами. Первые несколько секунд цилиндр и гильза свободно проворачиваются, этого достаточно для совмещения отверстий.
Напильником снимаем фаски с кромок окон цилиндра (рис. 8, сеч. 1 и 11).
Если используется новый поршень, с помощью притира необходимо подогнать гильзу до номинальных размеров (рис. 9), используя вначале грубую, затем тонкую абразивные пасты. Добьемся, чтобы смазанный маслом поршень от легкого усилия свободно перемещался. Зазор между поршнем и гильзой — 0,05 мм.
По окончании доводочных работ проводим полировку всех каналов и окон.
Заканчивается первый этап сборки установкой в картере коренных подшипников. Половинки картера нагреваем на электроплитке или в воздушной бане до 70—80 °С. Затем запрессовываем подшипники. Между половинками вкладываем заводскую прокладку, предварительно смазав ее тонким слоем герметика ВГО-1, устанавливаем коленвал, собираем коробку передач, завинчиваем все винты.
Подбираем поршень с одним стальным кольцом толщиной 1 мм и с диаметром отверстия под поршневой палец 10 мм (рис. 10).
Для улучшения динамики газового потока со стороны впуска (вид А) подрезаем юбку поршня по размерам впускного окна в цилиндре. Увеличиваем ширину продувочных окон на поршне до 20 мм, выдерживая размер 42 мм.
Рекомендуем произвести притирку поршневого кольца в канавке. Для этого установим кольцо на поршень и, смазав моторным маслом, вставим поршень в цилиндр на глубину 10—15 мм. Вращая его, добьемся свободного проскальзывания кольца в поршневой канавке. Затем, промыв поршень в бензине, снимем кольцо и установим стопор. Для этой операции нужно правильно произвести разметку — убедимся, что стопоры находятся в местах, свободных от окон.
В поршне сверлим отверстие диаметром 0,8 мм на глубину 5 мм. Подбираем стальную или латунную проволоку диаметром 1 мм, конец которой обрабатываем на конус молотком. В нагретый до 100 градусов С поршень забиваем маленьким молоточком стопор. Длинный конец откусываем, а выступающую часть запиливаем надфилем до высоты, равной половине канавки под поршневое кольцо.
Размер зазора в поршневом кольце устанавливаем 0,1—0,12 мм. Головку поршня тщательно полируем.
Для двигателя малых объемов широкое распространение получила камера сгорания со смещенной сферой — «жокейская шапочка» (рис. 11). Весь объем камеры завариваем аргонной сваркой, предварительно завернув в гнездо чистую ненужную свечу. Расточку новой камеры проводим в четырехкулачковом патроне на токарном станке. Нарезаем резьбу М 14×1,25 под свечу зажигания. Тщательно полируем поверхность камеры. Для уплотнения головки применяем свою алюминиевую прокладку.
Карбюратор берем с диаметром диффузора 28 мм. Главный жиклер — 120—125.
Правильно подобранная длина впускного патрубка дает возможность использовать резонансные явления газового потока, что повышает коэффициент наполнения цилиндра. Патрубок изготовлен из алюминия (рис. 12), длина его 50 мм. С помощью напильника добьемся совпадения каналов (вид А). Карбюратор закрепляем на впускном патрубке с помощью дюритового шланга с внутренним диаметром 38 мм и стальными хомутами. Для надежного крепления на патрубке и карбюраторе протачиваем канавки шириной 3 мм и глубиной 1—1,5 мм.
Для воздушного фильтра подойдет поролон толщиной 5 мм. Фланец (рис. 13) изготовим из алюминия и напрессуем его на карбюратор, зафиксировав штифтом. На фланце закрепляем каркас из стальной проволоки, на который надеваем мешочек из поролона.
Глушитель в двухтактном двигателе оказывает существенное влияние на его характеристики и мощность. Откажемся от стандартного и изготовим по рисунку 14 новый. Для колена подбираем трубу толщиной 1-1,5 мм с внутренним диаметром 28 мм. Корпус изготовим из стального листа толщиной 0,7-1 мм, стыки проварим газосваркой. Для крепления глушителя к цилиндру выточим стальной фланец (рис. 15) и приварим к впускному колену по месту. К цилиндрической части глушителя приварим кронштейн из стали толщиной 2-3 мм для его крепления к раме.
Корзины сцепления упрочит стальная полоска толщиной 1 мм, приваренная контактной электросваркой по наружному диаметру.
Второй этап — сборка двигателя согласно заводской инструкции. При установке цилиндра вырежем под него новую прокладку из ватмана, смазав ее тонким слоем герметика ВГО-1. Проследим, чтобы прокладка и излишки герметика не попали в продувочные каналы, а сама прокладка расположилась вровень с окнами.
Впускной патрубок крепится на цилиндре двумя шпильками, прокладка также вырезается из ватмана по размерам окна и смазывается герметиком ВГО-1.
Фланец глушителя крепится к цилиндру двумя шпильками, уплотнение — асбестовая нить.
Обкатку форсированного двигателя производят согласно инструкции. Нельзя перегружать двигатель, развивая максимальные обороты.
Регулировке подвергаются карбюратор и свеча зажигания. Опережение зажигания устанавливаем —1,6 мм до верхней мертвой точки.
Регулировку карбюратора начинаем с богатой смеси и постепенно переходим к бедной, избегай заклинивания или поломки поршня. Начнем операцию с установки главного жиклера 120-125. Если прогретый двигатель на второй передаче не работает на максимальных оборотах или на низких передачах при максимальных оборотах дает перебои — это говорит об очень богатой смеси. Уменьшим главный жиклер, взяв смежный размер.
Далее работу оцениваем по состоянию свечи и по максимально развиваемым оборотам двигателя. После пробега 1-2 км на максимальной скорости остановите двигатель и выверните свечу. Черный нагар на электродах и корпусе говорит о чрезмерно обогащенной смеси. Обгоревшие электроды с капельками расплавленного металла, белый изолятор и светлый корпус — о бедной. При правильно подобранном составе электроды остаются сухими, изолятор окрашен в кофейный цвет, а корпус в темно-серый, без следов нагара.
Работу двигателя на режимах с минимально открытым дросселем определяют жиклер и регулировочный винт холостого хода.
Карбюратор нужно отрегулировать так, чтобы двигатель переходил с одного режима на другой плавно, без провалов мощности. И при быстром сбросе ручки газа, не должен глохнуть.
Автор: А. Плаксин
http://patlah.ru
© «Энциклопедия Технологий и Методик» Патлах В.В. 1993-2007 гг.
МОЙ МОТОЦИКЛ
Данную статью можно отнести к любому мотоциклу с воздушным охлаждением.
Все мы не понаслышке знаем, что двигатель мотоциклов Урал довольно сильно греется. После написания нескольких статей про двигатели 8.104 (ИМЗшная водянка) и двигатель 8.123 (825сс), и я решил рассмотреть данный вопрос подробнее на примере других производителей авто и мототехники.
Все наши двигатели работают по одному и тому же простейшему принципу, не важно — старенький М72 у вас или мощный топовый эрадин: мы сжигаем в определенном объеме топливо, а подвижная часть — поршень, соединенный через шатун с коленчатым валом, совершает механическую работу. Разумеется, что при сгорании топлива будет выделяться тепло. И сильнее всего будут греться поршни, камера сгорания с клапанами и втулками, находящаяся в головке и сам цилиндр. Нагрев выше определенных величин грозит серьезными последствиями: задиры, клин, коробление деталей цпг. Это наиболее неприятные последствия. А частая работа мотора в таких условиях сулит ему очень недолгий срок жизни. Учитывая то, что принцип работы и основные части любого поршневого двигателя одинаковы, я рассмотрю ниже некоторые конструкции мотоциклетных и автомобильных двигателей воздушного, воздушномасляного и водяного охлаждения.
Двигатель Урал 650 и 750сс. Принципиальная конструкция абсолютно одинаковая, различаются лишь некоторыми конструктивными изменениями. Очень не любят долгой езды на большой скорости, особенно моторы 650. С моторами 750 немного проще: качественные поршневые кольца, кованые поршни и цилиндры из алюминия с залитой чугунной гильзой значительно лучше отводят тепло, поэтому продолжительная езда на скоростях до 130 безопасна для мотора. А вот если начинать отжигать и гонять, давать хорошие нагрузки мотору, ездить в пробках, начинаются проблемы с перегревами.
Теперь о конструкции головок и цилиндров различных мотоциклов.
Воздушномасляные моторы мотоциклов BMW серий R11х0 и отчасти 1200 имеют очень скудное оребрение головок и цилиндров. А оребрение последних вообще чисто символическое.
И это несмотря на высокие степени сжатия, мощность и крутящий момент. Инженеры сочли нужным отводить тепло от наиболее нагретых частей головок цилиндров: полость у выхлопного коллектора и полость под клапанной крышкой, а остальное отдать на откуп воздуху. Так же заметим, что проведенные через цилиндры смазочные каналы для рокеров являются дополнительным охлаждающим элементом. Поршни принудительного охлаждения не имеют. Тепловой зазор между цилиндром и поршнем составляет 0,12 мм. Масляная система имеет два контура и двухсекционный масляный насос (каждая секция работает на свой контур). Первый контур работает на смазку трущихся частей, второй контур работает на охлаждение. Система снабжена масляным термостатом и масляным радиатором, предназначенные для поддержания равномерной температуры масла. В итоге получился неубиваемый мотор, который хрен перегреешь: ни адовые отжиги, ни нагрузка, ни температура окружающего воздуха, все ему нипочем.
Японцы пошли по совершенно другому пути. Они решили обильно орошать все внутренности маслом, как на авиационных моторах времен Второй Мировой Войны.
Обратим внимание на оребрение: равномерное, небольшое, у цилиндров оно сходит на нет. При этом задняя часть рядной четверки явно будет в недостатке охлаждения, скажет диванный скептик. В двигателе применено принудительное охлаждение специальными масляными форсунками наиболее нагретой детали двигателя — поршня. Так же применено принудительное охлаждение маслом полостей под клапанной крышкой. Зазор между поршнем и цилиндром 0,04 — как у водяных моторов.
Так же, как и у BMW, двигатели оснащены двухсекционным масляным насосом и масляная система так же имеет два контура.
Итог: неубиваемый мотор с толстенными гильзами, на котором можно ехать как хочешь и эксплуатировать так, как душе угодно. Ресурс — отнюдь не в пример даже новым Уралам. Перегревы отсутствуют как таковые в принципе. Обладают огромным запасом прочности и в связи с этим пользуются большой популярностью у драгрейсеров.
Вернемся к BMW. Модель R1200GS 2014 года. Хитрые и умные инженеры концерна не стали делать полностью водяной мотор, как того многие ожидали, а решили опять же отводить тепло от наиболее нагретых мест: камера сгорания, верхняя часть цилиндров. Остальное охлаждается набегающим потоком воздуха и маслом.
Аналогичная система применяется на болидах формулы-1, где каждый грамм на счету. Писать, что получилось в итоге, думаю будет лишним.
Оппозитный мотор автомобилей Subaru серий EJ выпуска 80х-90х годов.
Применено принудительное охлаждение днищ поршней. На этих же двигателях позднее от масляных форсунок решили избавиться — нафига сейчас ресурс? При этом эти моторы спокойно бегают по 600 тысяч км и совершенно не думают умирать, а бегают они очень и очень бодро. Шланс, привет!))
На этот мотор я обратил внимание не просто так. Возникли вопросы: а не будет ли масло в цилиндры затекать, и не начнет ли мотор его жрать как пьяный динозавр… Инженеры Subaru эти сомнения развеяли.
Ну и напоследок, мотор Honda CBX1100. 6 цилиндровый рядник воздушного охлаждения, явно не изобилующий оребрением. Кстати прет как надо и практически не греется.
А теперь с чем мы вышеописанные конструкции сравниваем.
Мотор Урал 750сс и его производные форсированные собратья.
В стандарте 750ка (825сс) — низкофорсированный маломощный и низкооборотистый (по меркам всяких эрадинов) оппозитный мотор воздушного охлаждения с очень развитым и большим по площади оребрением — не в пример собратьям из европы и страны восходящего солнца. Причем торчащие по бокам «котлы» находятся в очень выгодном положении в плане отвода тепла.
Мною были проведены опыты и дорожные испытания с моторами 750 и 825сс.
Итоги.
Правильно настроенная 750ка не любит стоять подолгу на одном месте в запущенном состоянии — изза отсутствия набегающего потока воздуха мотор быстро нагревается. Очень любит езду на скоростях около 100 км/ч, до 130 км/ч можно ехать довольно продолжительно. Причем после остановки до цилиндров можно дотронуться рукой и держаться, а слюна на ребрах головок будет лениво шипеть. Продолжительная езда на больших скоростях не производилась. Мотор 825сс греется чуть больше 750ки (восприятие субъективное). При превышении скорости в 130 км/ч начинаются интересные вещи. Непродолжительная езда до 160 км/ч безопасна, а при продолжительной изза хорошего охлаждения головок и цилиндров и очень высокой температуры днища поршня начинают появляться задиры и прихваты. До клина дела не доходит, поскольку мотор сразу дает понять, что его перегрели резким падением мощности и скорости. Оба мотора очень не любят низкую скорость и высокую нагрузку. К чему я это пишу? Если вы не рукожоп, ездите тихо и мирно, в мотор в доработке не нуждается — и так все отлично работает. Совсем другое дело, если вы любитель открутить ручку… Тут мы сталкиваемся с проблемой отвода тепла от термонагруженных частей двигателя. В первую очередь — это днище поршня. Во вторую — головка цилиндра. Это означает, про придется организовать отвод тепла наиболее доступным и простым способом от сильно нагретых частей двигателя и температурная стабилизация масла. Конкретно я на своем моторе планирую применить масляные форсунки. Рассмотрим две схемы.
Крепление форсунки снизу.
Плюсы: близко расположенный питающий масляный канал, система не изменяет внешний вид двигателя. Минусы: большая длина форсунки. На определенных оборотах это может сыграть злую шутку — войдя в резонанс попросту отвалиться и наделать в моторе бед. Так же с такой системой масло, вырывающееся из сопла, будет поливать только определенный участок днища поршня (черной стрелкой показан путь масла), а значит оно там будет находиться недолго и не отведет максимум тепла. Такая система была применена на отечественном спортивном оппозитном двигателе с наддувом АС-500К, по который я писал в одной из своих статей тут :
Крепление форсунки сверху.
Плюсы: масло проделает максимальный путь по поршню и снимет максимум тепла , а затем под действием гравитации стечет в поддон. Маленькие габариты самой форсунки. Минусы — сложный подвод охлаждающего масла.
В итоге я решил выбрать второй вариант. У меня высокофорсированный двигатель с высокой степенью сжатия, а установка наддува проблему отвода лишнего тепла делает очень актуальной.
Так же не лишним будет снимать тепло с полости под клапанной крышкой, как это сделано на некоторых вышеописанных конструкциях. Но то отдельная, очень большая тема для размышлений, на данный момент прорабатывается. Всем успехов.
Как форсировать двигатель мотоцикла
Инструкция
Совет 2: Как форсировать двигатель мотоцикла ИЖ «Планета»
Вам понадобится
- — механическая мастерская среднего уровня оснащения;
- — исправный двигатель Иж Планета
Инструкция
А еще форсированный двигатель более чувствителен к своевременности и качеству технического обслуживания.
Как доработать «калину»
Для повышения мощности 125-кубового мотоцикла «Минск» спортсменами и любителями было разработано множество методов форсирования мотора. Эффективность (прирост мощности) каждого метода напрямую зависит от сложности выполненных работ.…
Многим владельцам скутеров со временем начинает не хватать стандартной мощности двигателя. Хочется более высокой скорости, более резвого разгона, более надежного и уверенного движения с большими нагрузками, по труднопроходимым дорогам и на подъемах.…
Самостоятельная сборка двигателя Иж Юпитер 5 после его ремонта — ответственная операция. Невнимательность и ошибки при сборке рано или поздно приведут к появлению поломок при его эксплуатации. Однако, внимание и наблюдательность, проявленные при его…
Двигатель мотоцикла «Минск» отличается доступностью для самостоятельной форсировки. При этом он не только повышает мощность до 15 л.с., но и становится экономичнее, а при тщательности выполнения работ – еще и долговечнее.…
Двигатели мотоциклов «ИЖ-Юпитер» легко поддаются форсированию. Отсутствие выпускаемых готовых комплектов для форсировки заставляют владельцев этих мотоциклов искать способы форсажа с помощью имеющихся деталей от других моделей…
В жизни каждого владельца скутера настает час, когда максимальной скорости и динамики требуется больше. Если скутер является для владельца средством выделиться из толпы, то аппарат просто обязан поражать всех скоростью. Но только правильный подход к…
В двигателе БМВ заключен немалый потенциал для форсирования. Профессионалы турботюнинга прибавляют двигателям БМВ несколько десятков лошадиных сил. Специалисты таких фирм наладили выпуск комплектов, позволяющих повысить мощность двигателей БМВ до 35…
После установки двигателя внутреннего сгорания, важно правильно его настроить. Даже два абсолютно одинаковых двигателя будут требовать разной настройки, поэтому единого рецепта не существует. Инструкция1В работе двигателя все взаимосвязано. Даже…
Газель – один из самых популярных коммерческих автомобилей России. Одно их главных конкурентных преимуществ – низкая цена. При этом имеет множество конструктивных недостатков, которые стремятся исправить с помощью тюнинга. Один из таких недостатков…