3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое компенсация реактивной мощности двигателей

Принципы компенсации реактивной мощности

Компенсацией реактивной мощности называют ее выработку или потребление с помощью компенсирующих устройств.

Принцип компенсации реактивной мощности заключается в следующем.

Как было установлено, ток, проходящий через конденсатор, опережает приложенное к нему напряжение на 90°, в то время как ток, проходящий через катушку индуктивности, отстает от приложенного напряжения на 90°. Таким образом, емкостный ток противоположен индуктивному току и реактивная мощность, идущая на создание электрического поля, противоположна по направлению реактивной мощности, идущей на создание магнитного поля. Поэтому емкостный ток и емкостная мощность считаются условно отрицательными по отношению к току намагничивания и мощности намагничивания, условно принятыми положительными.

Таким образом, численно равные реактивные мощности емкости и намагничивания взаимно «уничтожаются» (QC – QL = 0) и сеть разгружается от протекания реактивной составляющей тока нагрузки.

Принцип компенсации при помощи емкостного тока поясняет векторная диаграмма на рисунке 1.

Рисунок 1 – Принцип компенсации реактивного тока намагничивания[2]: а – схема до компенсации; б – схема с компенсацией

Емкость конденсатора С, подключенного параллельно нагрузке, содержащей R и L, подбирают такой, чтобы ток IC, проходящий через конденсатор, был по возможности близок по абсолютной величине к намагничивающему току IL, потребляемому индуктивностью L. Из векторной диаграммы видно, что подключение конденсатора С дало возможность уменьшить угол сдвига фаз между током и напряжением нагрузки с величины j1 до величины j2 и соответственно повысить коэффициент мощности нагрузки. Увеличивая емкость, можно полностью скомпенсировать реактивную мощность нагрузки, когда j = 0[2].

Компенсация реактивной мощности, как всякое важное техническое мероприятие, может применяться для нескольких различных целей. Во-первых, компенсация реактивной мощности необходима по условию баланса реактивной мощности. Во-вторых, установка компенсирующих устройств применяется для снижения потерь электрической энергии в сети. И, наконец, в-третьих, компенсирующие устройства применяются для регулирования напряжения.

Во всех случаях при применении компенсирующих устройств необходимо учитывать ограничения по следующим техническим и режимным требованиям:

1) необходимому резерву мощности в узлах нагрузки;

2) располагаемой реактивной мощности на шинах ее источника;

3) отклонениям напряжения;

4) пропускной способности электрических сетей.

Для уменьшения перетоков реактивной мощности по линиям и трансформаторам источники реактивной мощности должны размещаться вблизи мест ее потребления. При этом передающие элементы сети разгружаются по реактивной мощности, чем достигается снижение потерь активной мощности и напряжения.

Таким образом, вследствие применения компенсирующих устройств на подстанции при неизменной мощности нагрузки реактивные мощности и ток в линии уменьшаются – линия разгружается по реактивной мощности[20].

Уменьшение потребления реактивной мощности на предприятии достигается путем компенсации реактивной мощности как естественными мерами (сущность которых состоит в ограничении влияния приемника на питающую сеть путем воздействия на сам приемник), так и за счет специальных компенсирующих устройств (реактивной мощности) в соответствующих точках системы электроснабжения.

Мероприятия, проводимые по компенсации реактивной мощности эксплуатируемых или проектируемых электроустановок потребителей, могут быть разделены на следующие три группы:

1) не требующие применения компенсирующих устройств;

2) связанные с применением компенсирующих устройств;

3) допускаемые в виде исключения.

Мероприятия первой группы направлены на снижение потребления реактивной мощности и должны рассматриваться в первую очередь, поскольку для их осуществления, как правило, не требуется значительных капитальных затрат.

Последние два мероприятия должны обосновываться технико-экономическими расчетами и применяться при согласовании с энергосистемой.

Мероприятия, не требующие применения компенсирующих устройств:

1) упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования, а следовательно, и к повышению коэффициента мощности;

2) переключение статорных обмоток асинхронных двигателей напряжением до 1000 В с треугольника на звезду, если их загрузка составляет менее 40%;

3) устранение режима работы асинхронных двигателей без нагрузки (холостого хода) путем установки ограничителей холостого хода, когда продолжительность межоперационного периода превышает 10 мин;

4) замена, перестановка и отключение трансформаторов, загружаемых в среднем менее чем на 30% от их номинальной мощности;

5) замена мало загруженных двигателей двигателями меньшей мощности при условии, что изъятие избыточной мощности влечет за собой уменьшение суммарных потерь активной энергии в энергосистеме и двигателе;

6) замена асинхронных двигателей синхронными двигателями той же мощности, где это возможно по технико-экономическим соображениям;

7) применение синхронных двигателей для всех новых установок электропривода, где это приемлемо по технико-экономическим соображениям;

8) регулирование напряжения, подводимого к электродвигателю при тиристорном управлении;

9) повышение качества ремонта двигателей с сохранением их номинальных данных;

10) применение преобразователей с большим числом фаз выпрямления;

11) применение поочередного и несимметричного управления работой преобразователей;

12) применение специальных преобразовательных систем с искусственной коммутацией вентилей (такие системы характеризуются сниженным потреблением реактивной мощности), а также систем с ограниченным содержанием высших гармоник в токе питающей сети.

Мероприятия, связанные с применением компенсирующих устройств:

1) установка статических конденсаторов;

2) использование синхронных двигателей в качестве компенсаторов;

3) применение статических источников реактивной мощности;

4) применение систем компенсации, состоящих из нескольких перечисленных устройств, работающих параллельно.

Применению устройств компенсации реактивной мощности должен предшествовать тщательный технико-экономический анализ в связи с высокой стоимостью и достаточной сложностью этих устройств.[4].

Компенсирующие устройства в зависимости от места их расположения в разветвленной электроэнергетической системе подразделяются на следующие виды: индивидуальные, групповые, централизованные компенсаторы. На рисунке 2 показаны различные схемы расположения компенсирующих устройств в электроэнергетической системе.

Рисунок 2 – Схемы подсоединения компенсирующих устройств:

а – индивидуальная компенсация; б – групповая компенсация; в – централизованная компенсация[17]

Индивидуальные компенсаторы – устройства, работающие непосредственно с приемником, потребляющим из питающей сети реактивную мощность. При полной компенсации приемник и устройство компенсации представляют для питающей сети устройства, потребляющие только активную мощность. Однако при выключенном потребителе компенсирующие устройства также не используются, что является главным недостатком индивидуальной компенсации. Такой вид компенсации лучше всего применять для компенсации мощности искажения приемников с нелинейными характеристиками.

Групповая и централизованная компенсация позволяет использовать устройства независимо от работы отдельных потребителей. Для реализации компенсации этого вида требуется дополнительная аппаратура – коммутационная и защитная; кроме того, компенсирующие устройства должны обеспечивать достаточный диапазон регулирования потребляемой мощности. Диапазон изменения мощности, потребляемой компенсирующими устройствами, должен быть определен на основе анализа суточной потребности в реактивной мощности для данной группы потребителей. Как правило, для группы потребителей характерно частое изменение нагрузки, что требует применения компенсирующих устройств с автоматическим регулированием мощности, отдаваемой компенсатором.

При непрерывном развитии электроэнергетических систем и наметившейся тенденции к созданию все более крупных энергоблоков значение централизованной компенсации снижается. При централизованной компенсации в крупных энергосистемах не обеспечивается компенсация во всех точках системы, особенно при размещении нелинейных нагрузок на большом расстоянии от электростанций и подстанций, причем, чем больше расстояние, тем больше потери в сети. Поэтому в настоящее время все чаще создают групповые компенсаторы, а для нелинейной нагрузки большой мощности – индивидуальные компенсаторы.

Важным моментом является соответствующее расположение компенсатора, и в особенности выбор мест подсоединения схем измерения. Компенсатор целесообразно располагать так, чтобы имелась возможность стабилизации реактивной мощности в точке подключения преобразователя. В этом случае достигается ограничение колебания напряжения в энергосистеме при изменении условий работы подключенных потребителей[17].

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Увеличение энергоэффективности путем компенсации реактивной мощности

Мы работаем
по всей России

Необходимость увеличения энергоэффективности промышленного производства становится все более актуальной. Это обусловлено все большим дефицитом и увеличением стоимости энергоресурсов, ростом объемов производства и в конце концов необходимостью увеличения конкурентоспособности предприятия за счет уменьшения энергоемкости производства.

Читать еще:  Дацун ондо двигатель от чего

Большинство промышленных потребителей электроэнергии наряду с активной мощностью потребляют и реактивную мощность, которая расходуется на создание электромагнитных полей и является бесполезной. Наличие в электросети реактивной мощности снижает качество электроэнергии, приводит к увеличению платы за электроэнергию, дополнительным потерям и перегреву проводов, перегрузке подстанций, необходимости завышения мощности силовых трансформаторов и сечения кабелей, просадкам напряжения в электросети.

В настоящее время нагрузкой электрической сети переменного тока промышленных предприятий в основном являются асинхронные двигатели и распределительные трансформаторы, имеющие значительную индуктивность. Поэтому данные устройства в процессе работы за счет ЭДС самоиндукции генерируют реактивную мощность, которая, совершая колебательные движения от нагрузки к источнику (генератору) и обратно, распространяется по сети.

Индукционные приемники энергии или потребители реактивной мощности

  • Трансформатор. Он является одним из основных звеньев в передаче электроэнергии от источника электрической энергии до потребителя и предназначен для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности.
  • Асинхронный двигатель. Асинхронные двигатели наряду с активной мощностью потребляют до 65% реактивной мощности энергосистемы.
  • Индукционные печи. Это крупные электроприемники, требующие для своего действия большое количество реактивной мощности. Индукционные печи промышленной частоты часто используются для плавки металлов.
  • Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей. Данные установки широко применяются на промышленных предприятиях и железнодорожном транспорте, использующем постоянный ток.

Потребителя обычно интересует активная мощность в нагрузке, которая и определяет полезную работу. Генерация нагрузкой реактивной мощности повышает полную мощность, проходящую по сети. Полная мощность (S) равна корню из геометрической суммы P — активной мощности и Q — реактивной мощности.

Генерация реактивной мощности нагрузкой сопровождается отрицательными явлениями, такими как:

  • повышение активных потерь (т. к. величина полной мощности повышается);
  • снижение нагрузочной способности (т. к. увеличивается токовая нагрузка на питающий кабель и распределительный трансформатор);
  • большее падение напряжения (из-за увеличения реактивной составляющей тока питающей сети).

Хотя на выработку реактивной мощности не тратится энергия генератора, но для передачи ее по сети требуется дополнительная, активная энергия генератора. Дополнительный реактивный ток, проходя по сети, вызывает не только активные потери мощности в проводах сети и генератора, но и уменьшает допустимую активную составляющую тока питающей сети, т. к. сечение питающего кабеля рассчитано под максимальную нагрузку. Уровень реактивной мощности двигателей, генераторов и сети предприятия в целом характеризуется коэффициентом мощности cos φ — это численное отношение активной мощности к полной мощности: cos φ = P/S. Например: cos φ асинхронных двигателей составляет примерно 0,7; cos φ сварочных трансформаторов — примерно 0,4; cos φ станков не превышает 0,5 и т. д. Поэтому полное использование мощностей сети возможно только при компенсации реактивной составляющей мощности.

К чему приводит отсутствие компенсации реактивной мощности у потребителей

  • У трансформаторов при уменьшении cos φ уменьшается пропускная способность по активной мощности вследствие увеличения реактивной нагрузки.
  • Увеличение полной мощности при снижении cos φ приводит к возрастанию тока и, следовательно, потерям мощности, которые пропорциональны квадрату тока.
  • Увеличение тока требует повышения сечений проводов и кабелей, растут капитальные затраты на электрические сети.
  • Увеличение тока при снижении cos φ ведет к увеличению потери напряжения во всех звеньях энергосистемы, что вызывает понижение напряжения у потребителей.
  • На промышленных предприятиях понижение напряжения нарушает нормальную работу электроприемников. Снижается частота вращения электродвигателей, что приводит к снижению производительности рабочих машин, уменьшается производительность электрических печей, ухудшается качество сварки, снижается световой поток ламп, уменьшается пропускная способность заводских электрических сетей, а как итог — ухудшается качество продукции.

Применение емкостных компенсаторов реактивной мощности позволяет снизить объем потребляемой индуктивной реактивной мощности и добиться экономического эффекта в вопросах энергосбережения. Существует несколько способов снижения реактивной мощности, однако применение для этих целей именно конденсаторных установок представляется наиболее предпочтительным. Конденсаторные установки имеют малые потери, просты в наладке и эксплуатации, их можно подключить в любой точке электросети. С их помощью можно компенсировать практически любой объем реактивной мощности.

Принцип работы емкостного компенсатора реактивной мощности заключается в том, что реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами — индуктивными обмотками нагрузки и емкостным компенсатором. При этом для снижения потерь, вызываемых перетоком реактивной мощности, необходимо компенсатор располагать как можно ближе к нагрузке.

В качестве коммутирующего элемента в конденсаторных установках могут применяться контакторы или тиристоры.

Контакторные конденсаторные установки получили наиболее широкое распространение в силу более простой реализации и низкой стоимости по сравнению с тиристорными (статическими) конденсаторными установками. Однако на промышленных предприятиях довольно часто нагрузка имеет резкопеременный характер, в таких случаях контакторные компенсаторы малоэффективны из-за недостаточного быстродействия механики контакторов. Более того, контакторы имеют ограниченное расчетное количество срабатываний, что при интенсивных переключениях приводит к преждевременному выходу из строя компенсатора.

Указанных выше недостатков контакторных компенсаторов лишены тиристорные компенсаторы реактивной мощности. Тиристоры обладают гораздо большим быстродействием, что позволяет выполнять компенсацию реактивной мощности в условиях быстропеременной нагрузки. А также не имеют ограничений на количество переключений, так как являются полностью электронными элементами, без движущихся механических частей. А то, что коммутация конденсаторов в тиристорных конденсаторных установках происходит при нулевом значении тока, значительно увеличивает срок службы как конденсаторных батарей, так и всей установки в целом.

НПП «РУМИКОНТ» производит тиристорные компентаторы реактивной мощности (ТКРМ) в диапазоне 50 . 1000 кВАр для трехфазных электрических сетей 380 В и 660 В.

Тиристорный компенсатор ТКРМ-500/0,4-07-90-Д-УХЛ4

номинальная мощность 500 кВАр,

напряжение питания 380 В, номинальный потребляемый ток 750 А

Тиристорный компенсатор ТКРМ-500/0,4-07-90-Д-УХЛ4

(компоновка шкафов — вид спереди)

Тиристорный компенсатор ТКРМ-500/0,4-07-90-Д-УХЛ4

(компоновка шкафов — вид сзади)

Модуль тиристорного компенсатора мощностью 120 кВАр

Состав: емкости компенсации, предохраниети, тиристоры,

формирователь импульсов управления тиристорами,

ТКРМ-500/0,4-07-90-Д-УХЛ4 является законченным комплектным устройством, однако требует подключения трансформаторов тока по двум фазам для измерения и регулирования мощности. Состоит из системы управления, панели индикации, четырех регулируемых блоков и одного нерегулируемого блока с конденсаторами.

Тиристорный компенсатор реактивной мощности укомплектован вводным автоматическим выключателем, обеспечивающим защиту ТКРМ от сверхтоков, а также защиту оборудования подстанции от внутренних коротких замыканий в ТКРМ.
Каждый из конденсаторных блоков снабжен дополнительно предохранителями, установленными в двух фазах. Предохранители обеспечивают селективную защиту ТКРМ от сверхтоков внутри отдельных блоков. Защита от перенапряжений осуществляется блоком варисторов, которым укомплектован стационарный блок. Микропроцессорная система управления укомплектована внутренними датчиками, позволяющими отследить пропадание напряжения собственных нужд и отключить ТКРМ.

На панели индикации отображаются следующие параметры:

  • линейное напряжение a-b, В;
  • линейное напряжение b-c, В;
  • ток нагрузкм фазы а, А;
  • ток нагрузки фазы с, А;
  • ток конденсаторной батареи фазы а;
  • ток конденсаторной батареи фазы с;
  • коэффициент мощность (cos φ);
  • реактивная мощность, вКАр;
  • активная мощность, кВт;
  • полная мощность, кВА.

В современных сетях электроснабжения из-за нелинейности нагрузки (например при работе импульсных стабилизаторов и преобразователей электроэнергии) возникают высшие гармоники тока, которые по своей величине часто становятся соизмеримыми с основной гармоникой. Конденсаторы установок компенсации реактивной мощности в совокупности с индуктивностью нагрузки могут образовывать колебательные контуры, близкие по частоте резонанса к частоте одной из высших гармоник. Это приводит к значительному увеличению тока конденсаторов и существенно сокращает их срок службы. Перенапряжения, возникающие при резонансе на элементах конденсаторной установки и нагрузки могут привести к пробою изоляции. Для устранения подобных проблем, а также для оптимизации характеристик компенсатора, до внедрения ТКРМ выполняется исследование электросети заказчика. Для подавления резонансов применяются реакторы, настроенные на частоту наиболее значительных гармоник.

Читать еще:  Фонтан герона как вечный двигатель

Ниже приведены реальные результаты исследования электросети потребителя до и после внедрения ТКРМ.

Суточный график потребления активной (P) и реактивной (Q) мощности производственного участка

до внедрения компенсатора реактивной мощности

Суточный график коэффициента мощности (cos φ) производственного участка

до внедрения компенсатора реактивной мощности

Суточный график потребления активной (P) и реактивной (Q) мощности производственного участка

после внедрения компенсатора реактивной мощности

Суточный график коэффициента мощности (cos φ) производственного участка

после внедрения компенсатора реактивной мощности

Технические характеристики моделей тиристорных компенсаторов реактивной мощности

Компенсация реактивной мощности у потребителей

Для перемещения электрической энергии от мест производства до мест потребления не используются другие ресурсы, используется часть самой передаваемой энергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии — одна из задач энергосбережения. Классификация потерь включает в себя четыре составляющие.

1. Технические потери электроэнергии, обусловленные физическими процессами, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сетей.

2. Расход электроэнергии на собственные нужды, необходимый для работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала.

3. Инструментальные потери, определяются метрологическими характеристиками и режимами работы используемых приборов.

4. Коммерческие потери, обусловлены несоответствием показаний счетчиков оплате за электроэнергию потребителями и другими причинами в сфере организации контроля за потреблением энергии (т.е., в первую очередь, воровством).

Нагрузочные потери активной мощности в элементе сети с сопротивлением R при напряжении U определяются по формуле:

В большинстве случаев значение P (активная мощность) и Q (реактивная мощность) на элементах сети изначально неизвестны. Как правило, известны нагрузки в узлах сети (на подстанциях). Значения данных величин определяются посредством измерений по нормативным методикам, позволяющим определить данные параметры для различных периодов нагрузок — сезонных минимумов и максимумов.

Из формулы видно, что для снижения потерь мощности важно проводить мероприятия по уменьшению или ограничению потребления реактивной мощности потребителями.

В электрических цепях, содержащих комбинированную нагрузку, в частности, активную (лампы накаливания, электронагреватели и др.) и индуктивную (электродвигатели, распределительные трансформаторы, сварочное оборудование, люминесцентные лампы и др.) общую мощность, забираемую от сети, можно выразить следующей векторной диаграммой:

Рис. 9.3. Диаграмма потребления мощности

Отставание тока по фазе от напряжения в индуктивных элементах обуславливает интервалы времени, когда напряжение и ток имеют противоположные знаки: напряжение положительно, а ток отрицателен и наоборот. В эти моменты мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. При этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно). Соответствующую мощность называют реактивной.

Рис. 9.4. Диаграмма активной и реактивной мощности

Полная мощность складывается из активной мощности, совершающей полезную работу, и реактивной мощности, расходуемой на создание магнитных полей и создающей дополнительную нагрузку на силовые линии питания. Соотношение между полной и активной мощностью, выраженное через косинус угла между их векторами, называется коэффициентом (фактором) мощности.

Активная энергия преобразуется в полезную — механическую, тепловую и др. энергии. Реактивная энергия не связана с выполнением полезной работы, однако она необходима для создания электромагнитного поля, наличие которого является необходимым условием для работы электродвигателей и трансформаторов. Потребление реактивной мощности от энергоснабжающей организации нецелесообразно, т.к. приводит к увеличению мощности генераторов, трансформаторов, сечения подводящих кабелей, а так же повышению активных потерь и падению напряжения. Поэтому реактивную мощность необходимо получать (генерировать) непосредственно у потребителя. Эту функцию выполняют установки компенсации реактивной мощности (КРМ), основными элементами которых являются конденсаторы.

Реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами — индуктивными обмотками нагрузки и компенсатором. Такая компенсация реактивной мощности (снижение индуктивного тока в системе «генератор — нагрузка») позволяет, в частности, передать в нагрузку большую активную мощность при той же номинальной полной мощности генератора.

Наиболее эффективно проводить компенсацию реактивной мощности непосредственно у потребителя, но это процесс достаточно долгий и дорогостоящий. Для получения более быстрого ощутимого результата на первом этапе необходимо провести компенсацию реактивной мощности на подстанциях, что позволит разгрузить сеть и получить энергосбережение в пределах 10-20%. Предварительно, на подстанциях в сетях 0,4 кВ необходимо выравнивание нагрузок фаз, которое производится путем переключения части абонентов с перегруженных фаз на недогруженные.

На уровне отдельных непромышленных потребителей, особенно в жилых домах с однофазной нагрузкой, выравнивание фаз таким способом произвести нельзя из-за непрерывно меняющейся величины и характера нагрузки. Поэтому компенсация реактивной мощности на объектах должна производиться на каждой отдельной фазе. При этом в каждом случае должны учитываться гармонические составляющие, при необходимости устройства по компенсации реактивной мощности должны иметь фильтры с автоматическим регулированием емкости. В данном случае важно правильно произвести подбор фильтро-компенсирующего устройства (ФКУ).

Таким образом, для решения задачи по КРМ необходимо проводить работу в несколько этапов.

  • 1. Централизованная (грубая) компенсация, которая проводится на подстанциях и включает в себя проведение мониторинга показателей качества электроэнергии, выравнивание фаз, фильтрацию тока и установку КРМ.
  • 2. Индивидуальная (точечная) компенсация проводится на уровне каждой квартиры или параллельно нагрузке, посредством подключения установок КРМ (косинусных конденсаторов небольшой емкости). Данное мероприятие позволяет обеспечить синусоидальность тока, тем самым значительно уменьшая технические потери. Такие же мероприятия должны проводиться и внутри электроустановок зданий.

Хотя основными потребителями индуктивной мощности являются промышленные и производственные предприятия, на которых индуктивная мощность необходима для работы понижающих трансформаторов, асинхронных двигателей, электросварочного оборудования, индукционных печей и др., но нельзя сбрасывать со счетов и непромышленные объекты. Т.к. в настоящее время наблюдается увеличение потребления индукционной мощности в социально-бытовой сфере за счет увеличения числа различных электроприводов, стабилизирующих и преобразовательных устройств. Применение полупроводниковых преобразователей приводит к ухудшению формы кривой тока, что ухудшает работу других электроприемников, сокращает срок их службы, создает дополнительные потери электроэнергии. Современные люминесцентные светильники, все шире применяемые в квартирах и офисах, для продажи в России комплектуются дешевыми китайскими конденсаторами, срок службы которых обычно составляет несколько часов. Косинус φ у таких источников света составляет менее 0,5.

Нормативы уровня компенсации реактивной мощности изначально определены в «Инструкции по проектированию городских электрических сетей» (РД 34.20.185-94, последние изменения и дополнения внесены и утверждены Приказом Минтопэнерго РФ от 29.06.99 № 213.), где определены расчетные коэффициенты реактивной мощности жилых домов:

Лекция №14 Компенсация реактивной мощности

Баланс активных и реактивных мощностей

Активная мощность источников (турбогенераторов и гидрогенераторов электростанций, нетрадиционных источников, гидроаккумулирующих станций и др.) в любой момент времени соответствует потребляемой мощности (нагрузке) ∑Рн:

(13.1)

где ∑Ри — суммарная активная мощность источников; ∑Рсн — собственные нужды генерирующих источников; ΔРп — потери активной мощности.

Читать еще:  Что такое контрактный двигатель из сша

Приведенное уравнение определяет баланс активных мощностей в электрической системе.

Баланс активных мощностей соответствует определенным значениям частоты и напряжения в узлах, к которым подключены потребители (нагрузки). Изменение мощности источников связано с изменением частоты и напряжения очевидным равенством, получающимся разложением в ряд Тейлора функции ∑Ри = F(f;U):

(13.2)

При нарушении баланса мощностей вследствие снижения генерирующей мощности или увеличения потребления активной мощности устанавливается режим с изменившимися значениями составляющих уравнения баланса мощности. Снижение генерируемой мощности приводит к уменьшению частоты и напряжения в системе и наоборот с увеличением мощности источников возрастают частоты тока и напряжения одинаково в любом узле электрической системы. Воздействовать на изменение частоты можно только изменением генерируемой активной мощности. На тепловых и гидравлических электростанциях это достигается увеличением или уменьшением выпуска энергоносителя, т. е. пара или воды.

Номинальное значение частоты в Европейских странах составляет 50 Гц, в США и ряде других стран — 60 Гц. Снижение частоты приводит к уменьшению скорости вращения синхронных и асинхронных электродвигателей и, в конечном счете, к уменьшению производительности приводных механизмов.

В ориентировочных расчетах принимают, что изменение частоты на 1% приводит к изменению активной мощности нагрузки на 0,5%. Уравнение баланса реактивной мощности:

(13.3)

где ∑Qг, ∑Qк, ∑Qc — реактивная мощность, генерируемая генераторами электростанций, компенсирующими устройствами (синхронными компенсаторами, конденсаторами и другими устройствами, а также емкостями воздушных и кабельных линий); ∑Qн, ∑Qс.н, ∑ΔQп — реактивная мощность, потребляемая нагрузками, а также собственными нуждами электроснабжения и обусловленная потерями в элементах систем электроснабжения.

Реактивная или обменная мощность существенно влияет на такие параметры систем электроснабжения, как потери мощности и энергии и уровни напряжения в узлах сети. Поэтому вопрос компенсации реактивной мощности относится к числу важнейших при проектировании и эксплуатации систем энергоснабжения предприятий. Как известно, величина (значение) реактивной мощности характеризует скорость обмена электромагнитной энергии источниками и потребителями электроэнергии. При этом индуктивные элементы являются накопителями реактивной мощности, а емкостные — ее генераторами.

Основные потребители реактивной мощности

Асинхронные электродвигатели (АД) и трансформаторы (Тр) потребляют 60-80 % реактивной энергии в промышленных электросетях.

Для уменьшения потребления реактивной мощности АД выбирают двигатели с небольшим запасом по активной мощности; выполняют переключения статорных обмоток с треугольника на звезду при их загрузке ниже 40-50%; исключают режим холостого хода путем установки соответствующих ограничителей; заменяют асинхронные двигатели синхронными той же мощности, если это возможно по технико-экономическим соображениям.

Для уменьшения потерь реактивной мощности в Тр рекомендуется отключение в резерв Тр, загруженных менее 40 % номинальной мощности, а также перевод нагрузки на другой трансформатор, либо замена на менее мощный.

Дуговые сталеплавильные печи (ДСП) относятся к числу крупных потребителей реактивной мощности. В значительной мере это объясняется необходимостью обеспечить непрерывность горения электрической дуги, что возможно только при наличии индуктивности в цепи ДСП.

В настоящее время более 50% электроэнергии, поставляемой промышленными предприятиями, преобразуется с помощью выпрямителей и инверторов; эти устройства именуются вентильными преобразователями (ВП).

ВП являются крупными потребителями реактивной мощности. На основе ВП, как будет показано в дальнейшем, строят современные регулируемые источники реактивной мощности.

Индукционные печи предназначены для расплавления металлов индуцированными токами, для чего необходимо создание сильных магнитных полей. Для этой цели требуется значительная реактивная мощность.

На предприятиях применяют в основном однофазные печи мощностью до 6 МВт для плавления цветных металлов и до 2 МВт — сталеплавильные печи. Для генерирования токов высокой частоты (до 10 кГц) используют главным образом тиристорные преобразователи частоты на напряжения 0,38; 6; 10 кВ. Коэффициент мощности индукционных печей весьма низок: от 0,1 до 0,5-0,6, в связи с чем в комплект индукционной печи входят регулируемые батареи конденсаторов.

Установки дуговой и контактной электросварки являются однофазными резкопеременными нагрузками с cos φ от 0,2 до 0,6.

Источники реактивной мощности. Выбор компенсирующих устройств; критерий оптимизации компенсации реактивной мощности. Размещение, режим работы и регулирование компенсирующих устройств.

Батареи статических конденсаторов (БК) могут работать лишь как источ­ники реактивной мощности. Они выпускаются на различные номинальные напряжения и мощности. БК на напряжение до 1000 В обычно включаются по схеме треугольника, так как при этом к конденсатору приложено линей­ное напряжение и в три раза увеличивается реактивная мощность по сравне­нию с соединением в звезду:

(13.26)

где Uл — линейное напряжение сети; С — емкость трех фаз батарей; ω — угловая частота.

Размещение конденсаторов в сетях до и выше 1000 В должно удовлетворять условию наибольшего снижения потерь активной мощности от реактивных нагрузок. При этом возможны следующие виды компенсации:

1. Индивидуальная — с присоединением конденсаторов наглухо к зажимам электроприемника. В этом случае от реактивных токов разгружается вся сеть системы электроснабжения. Этот вид компенсации применяется чаще всего на напряжении до 1000 В и обладает существенным недостатком — неполно используются конденсаторы в связи с их отключением при отключении электроприемника;

Групповая — с присоединением конденсаторов к распределительным пунктам сети (шкафы, шинопроводы). В этом случае распределительная сеть до электроприемников не разгружается от протекания РМ, но эффективнее используется БК;

Централизованная — с подключением БК на шины 0,38 и (или) 6-10 кВ РП или ГПП. При подключении БК на шины 0,38 кВ разгружаются только цеховые трансформаторы и вышележащая часть сети.

Достоинства БК: 1) малые удельные потери активной мощности (0,0025-0,005 Вт/вар); 2) простота производства монтажных работ (малые габариты, масса, отсутствие фундаментов); 3) простота эксплуатации (ввиду отсутствия вращающихся и трущихся частей); 4) возможность их установки в центре реактивных нагрузок или около электроприемников; 5) для установки конденсаторов может быть использовано любое сухое помещение; 6) возмож­ность постепенного увеличения мощности БК.

Недостатки БК: 1) зависимость генерируемой РМ от напряжения; 2) недостаточная прочность, особенно при КЗ и перенапряжениях; 3) малый срок службы; 4) пожароопасность; 5) наличие остаточного заряда; 6) перегрев при повышении напряжения и наличии в сети высших гармоник, ведущих к повреждению конденсаторов; 7) сложность регулирования РМ (РМ регулируется ступенчато).

В качестве источников РМ широкое применение находят статистические тиристорные компенсаторы (СТК), которые могут работать по принципу прямой или косвенной компенсации.

Прямая компенсация предусматривает генерирование реактивной мощности статическим компенсатором. Различают ступенчатое и плавное регулирование реактивной мощности. В первом случае различное количество секций БК подключают с помощью тиристорных ключей. Во втором случае используются преобразователи частоты, преобразователи с искусственной коммутацией тиристоров.

В качестве источников реактивной мощности для прямой компенсации также используются компенсаторы с искусственной коммутацией тиристоров. Такой компенсатор представляет собой параллельное соединение двух трехфазных преобразователей. Изменение знака угла управления тиристоров достигнуто искусственной коммутацией тока в вентильных контурах напряжениями коммутирующих конденсаторов, а не напряжением сети.

В качестве источника реактивной мощности при косвенной компенсации также используют стабилизаторы с синхронизированными тиристорными ключами. При изменении реактивной мощности нагрузки подключается различное количество реакторов. Для снижения тока переходного процесса включение и отключение реакторов производится при α = π/2, когда проходящий ток равен нулю. В связи с этим запаздывание на включение и отключение реактора не превышает 10 мс. Достоинством этого компенсатора является отсутствие высших гармоник в спектре тока.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию