Что такое кпд двигателя постоянного тока
Электродвигатель постоянного тока
Электродвигатель постоянного тока – это первая из изобретенных электрических машин, которая преобразует энергию постоянного магнитного поля во вращательное движение. Они обладают большим КПД, чем асинхронные двигатели переменного тока, менее чувствительны к перегрузкам и легко управляются – реверсируюся, ускоряются, замедляются. А возможность уменьшить их размеры до буквально микроскопических предопределило их широкое распространение.
Как работает
Принцип работы электродвигателя, питающегося постоянным током, основан на принципе отталкивания одноименных полюсов магнита. Если свернутый в кольцо проводник подключить к источнику постоянного тока и поместить его между полюсами постоянного магнита, то он повернется на один оборот. Так, чтобы их одноименные полюса совпали.
Этому феномену дал объяснение и математическое обоснование французский физик Андре-Мари Ампер. Вкратце он объясняется правилом левой руки: если открытую ладонь обратить к отрицательному полюсу магнита, так, чтобы четыре пальца показывали направление движения тока по проводнику, то большой палец укажет направление, в котором его вытолкнет магнитное поле.
Чтобы движение продолжилось, в момент совпадения полюсов должно произойти изменение их знаков. Для этого используется до гениальности простое устройство – коллектор. Он состоит из изолированных друг от друга пластин, закрепленных на валу электродвигателя. Концы кольца проводника, образующего якорную обмотку, подключены к нему неподвижно. А питающее напряжение – посредством скользящих контактов, которые изначально делали из пучка тонких проводников, поэтому их назвали щетками. В момент поворота рамки с током происходит смена полярности, и она продолжает движение, отталкиваясь от неподвижного полюса магнита. Вот зачем нужны щетки в электродвигателе постоянного тока и почему его второе название «коллекторный двигатель».
Если якорная обмотка состоит из одной рамки, то она не сможет начать вращаться, если находится на магнитной нейтрали – перпендикулярно линии электромагнитного поля. Для запуска двигателя придется приложить усилие к его валу. Для ликвидации этого эффекта используется две якорные обмотки, но общераспространенным правилом является применение минимум трех.
Итак, конструкция любого двигателя постоянного тока состоит из трех элементов:
- Неподвижного магнита на статоре.
- Ротора с тремя или большим числом обмоток.
- Щеточного узла, к которому подводится питающее напряжение.
Статорный магнит может быть выполнен как из ферромагнетика, так и в виде нескольких катушек, подключенных к тому же источнику электричества, что и щеточный узел. Тогда он называется обмоткой возбуждения. Для плавности хода на статоре устраивается как минимум четыре соленоида, образующих два электромагнита.
Скользящие проволочные контакты на коллекторе сначала заменили щетки угольные, а потом более прочные, сделанные из электротехнического графита. Количество коллекторных пластин зависит от способа укладки якорных обмоток, который может быть петлевым, волновым или секционным. Однако оно ограничивается диаметром коллектора и физической толщиной щетки – одновременно она не должна перекрывать более двух пластин. В противном случае уменьшается число обмоток, участвующих в коммутации – переключении полюсов, что ведет к снижению вращающего момента двигателя.
Схемы подключения и способы управления
Существует три схемы подключения двигателя постоянного тока:
- Обмотка возбуждения включена параллельно якорной. Обеспечивается высокая стабильность частоты вращения.
- Обмотка возбуждения включена последовательно с якорной. Способ позволяет регулировать вращающий момент во время пуска и получать плавную скоростную характеристику. Поэтому он используется для включения тяговых электродвигателей на транспорте.
- Обмотка возбуждения делится на две – одна включена параллельно с якорной, другая последовательно с ней.
Частота вращения двигателя постоянного тока с независимой (параллельной обмоткой) вычисляется по формуле: N = (U – Iя . Rя)/(kc . Ф). Где:
- U – величина питающего напряжения.
- Iя и Rя – ток в цепи якоря и ее сопротивление.
- kc – коэффициент качества магнитной системы.
- Ф – сила магнитного потока.
Изменить ее можно тремя способами:
- Увеличить или уменьшить величину питающего напряжения. Возможно как ускорение, так и замедление двигателя. Регулировка количества оборотов осуществляется плавно.
- Изменить сопротивление цепи якоря. Регулировка ведется дискретно, в сторону уменьшения, но не более чем до половины номинальных оборотов. Способ связан с большими энергетическими потерями.
- Изменить сопротивление цепи обмотки возбуждения. Это приводит к изменению силы магнитного потока. Чем меньше ток, тем он слабее, а частота вращения выше. Теоретически возможно торможение, но на практике, из-за насыщения магнитной системы, увеличение силы тока непропорционально велико по отношению к величине приращения силы магнитного потока. Это может привести к аварии. Однако и чрезмерное ослабление тока в обмотке возбуждения вредно – машина пойдет вразнос.
Реверсирование осуществляется изменением полярности напряжения, подаваемого на якорь.
Коллекторный двигатель переменного тока
Материал и способ исполнения обмоток коллекторного двигателя аналогичен тем, которые используются в асинхронных машинах. Поэтому его подключение к переменному току не вызывает аварии. Чтобы вращение продолжалось в одну сторону, обмотки якоря и статора включаются последовательно, тогда смена полярности полюсов магнитов происходит одновременно.
Такая конструкция широко используется в ручном инструменте, подключаемом к однофазной сети 220 вольт. Она обладает рядом преимуществ перед асинхронным двигателем:
- Нет необходимости создавать вращающееся магнитное поле, подключение в сеть происходит напрямую, без фазосдвигающих устройств.
- Поскольку магнитные поля ротора и статора вращаются синхронно, момент на валу двигателя очень высок, он устойчиво работает при переменных нагрузках.
- Просто регулировать частоту вращения.
К недостаткам коллекторного двигателя стоит отнести щеточный узел, из-за которого работа сопровождается шумом, искрением и радиопомехами.
Двигатели постоянного тока – это уникальные электрические машины, находящие применение повсеместно. Они работают в системах охлаждения компьютеров, приводят в движение электровозы, ледоколы и подводные лодки.
Как работает бесколлекторный двигатель постоянного тока
Узнайте обо всех достоинствах бесколлекторных двигателей, а также о преимуществах и недостатках выбора этого типа двигателей для вашего проекта.
Если вы работаете над проектом, в котором есть движущаяся часть, вы, вероятно, будете искать двигатель, чтобы сделать это движение возможным. В этой серии статей мы рассмотрим наиболее популярные типы двигателей, которые используют разработчики. Сначала мы рассмотрели коллекторные двигатели постоянного тока. Теперь давайте посмотрим на их ближайший аналог: бесколлекторный двигатель постоянного тока.
Чтобы узнать, для каких проектов лучше всего подходят бесколлекторные двигатели постоянного тока, ознакомьтесь с обзором:
Обзор бесколлекторных двигателей постоянного тока
Бесколлекторные двигатели – это новая технология двигателей, быстро внедряемая в высокотехнологичных приборах и электромобилях (например, Tesla Model S) в качестве замены коллекторных двигателей постоянного тока. Они также чрезвычайно распространены в любительских летательных аппаратах, включая многомоторные. Поскольку бесколлекторные двигатели постоянного тока не имеют коллектора и щеток (что очевидно), они работают без многих ограничений коллекторных двигателей постоянного тока.
Бесколлекторные двигатели постоянного тока обычно используются в многомоторных летательных аппаратах из-за их высокой скорости и эффективности
Как они работают?
Бесколлекторные двигатели постоянного тока обычно используются в многомоторных летательных аппаратах из-за их высокой скорости и эффективности.
Оценка характеристик бесколлекторных двигателей
Как и коллекторные двигатели постоянного тока, бесколлекторные двигатели работают путем изменения полярности обмоток внутри двигателя. Магнитные поля, создаваемые при возбуждении обмоток, оказывают толкающее воздействие на постоянные магниты, расположенные вокруг внешнего корпуса.
На бесколлекторном двигателе постоянного тока вращается не вал двигателя, а внешний корпус. Поскольку центральный вал, к которому прикреплены обмотки, является неподвижным, питание может подаваться непосредственно на обмотки, что устраняет необходимость в щетках и коллекторе.
Без щеток бесколлекторные двигатели изнашиваются намного менее быстро, чем коллекторные двигатели постоянного тока. Они работают с гораздо меньшим звуковым и электрическим шумом и способны работать на гораздо более высоких скоростях.
Из чего состоит бесколлекторный двигатель постоянного тока
Бесколлекторные двигатели постоянного тока только недавно начали использоваться в потребительских товарах и любительских проектах, потому что их сложно контролировать.
В то время как коллекторные двигатели постоянного тока для изменения полярности обмоток используют просто вращение самого двигателя, бесколлекторные двигатели постоянного тока управляются активно и требуют сложной схемы управления обмоткой, которая также должна масштабироваться при увеличении скорости.
Только благодаря тому, что микроконтроллеры стали дешевле и доступнее, стало возможным, чтобы недорогие системы могли удерживать правильную частоту вращения, необходимую для работы двигателя.
Достоинства бесколлекторных двигателей постоянного тока
Низкий износ
Единственным физическим интерфейсом между вращающейся внешней стороной корпуса двигателя и стационарными обмотками внутри являются шарикоподшипники, что означает, что бесколлекторные двигатели постоянного тока изнашиваются очень медленно.
Высокая скорость
Бесколлекторные двигатели имеют намного меньшее трение, чем коллекторные двигатели постоянного тока, поэтому они могут работать на более высоких скоростях.
Высокая эффективность
По сравнению с другими типами двигателей бесколлекторные двигатели обладают очень высокой эффективностью работы, что означает более низкое энергопотребление при той же выходной мощности по сравнению с коллекторными двигателями постоянного тока.
Недостатки бесколлекторных двигателей постоянного тока
Очень высокая сложность управления
Бесколлекторные двигатели постоянного тока для правильной работы требуют специализированных контроллеров и сложных алгоритмов управления.
Высокая цена
Стоимость самих двигателей не слишком высока, но когда добавляется стоимость контроллера, общая стоимость использования бесколлекторного двигателя постоянного тока в проекте становится относительно высокой.
Необходимость специализированных передач
В таких приложениях, как вакуумные пылесосы Dyson, бесколлекторные двигатели постоянного тока должны быть снабжены передачей для преобразования высоких скоростей до нужной скорости.
Вычисление формулы КПД электрического двигателя
Электродвигатели стали делать много лет назад, но наивысший интерес они пробудили, когда стали заменять двигатели, работающие на бензине. КПД электрического двигателя — это один из важнейших показателей мотора. Он показывает продуктивность работы системы в целом, характеризуя, насколько хорошо механизм преобразует энергию. Показатель уровня полезного действия измеряется в процентах или градируется по шкале от 0 до 1.
- Немного истории и современности
- Основные характеристики работы моторов
- В чем плюсы электромотора
- Потеря энергии при нагревании движка
- Причины падения эффективности
- Элементы, влияющие на мощность
- Предельный показатель функциональности
- Бывает ли значение выше 100%
- Гидроэлектростанция — прототип вечного механизма
- Постоянные магниты — производители электроэнергии
Немного истории и современности
Главным толчком к развитию электрических двигателей послужило открытие закона электромагнитной индукции. Он гласит, что индукционный ток двигается так, чтобы оказать противодействие тому, что его вызвало. На этой основе и появился первый электрический двигатель.
Сегодняшнее производство электромоторов происходит согласно этой же теории, но теперешние модели имеют много отличий от первоначальных. Мощность электродвигателей возросла, они стали меньше в размерах, и, что немаловажно, коэффициент полезного действия повысился. Если сравнить его с КПД двигателя внутреннего сгорания, то результат будет далеко не в пользу последнего. Самый большой КПД такого мотора составляет не более 45%.
Основные характеристики работы моторов
Главная функция двигателя — превращение электрической энергии в механическую. КПД является показателем продуктивности выполнения данной функции. Формула КПД электродвигателя строится так:
где p1 — это подведенная электрическая мощность, а p2 — полезная механическая мощность, вырабатываемая электромотором.
Однако, не всё так просто. Функции двигателя и область его использования, многие другие переменные будут уточнять расчет и делать его более индивидуальным.
В чем плюсы электромотора
Существует много преимуществ электрических двигателей над двигателями внутреннего сгорания. Вот некоторые из них:
Высокий КПД.
- ДВС тратит примерно половину энергии на нагрев мотора. В случае с электрическим двигателем на это затрачивается совсем небольшое количество энергии.
- Электромотор гораздо меньше весит и более компактен. Новый двигатель фирмы Yasa Motors весит всего двадцать пять кг, при этом являясь достаточно мощным.
- Долгий срок эксплуатации.
- Автомобилям с электрическим двигателем не нужна коробка передач.
- Экологичность: машина не производит вредных выбросов в атмосферу. Однако это лишь отчасти правдиво, потому что для получения энергии электростанции используют природные ресурсы — газ, уголь, атомные реакции, и это является вредоносным фактором.
Потеря энергии при нагревании движка
Важную роль в работе электродвигателя играют потери энергии при нагревании двигателя. Наиболее часто падение КПД происходит от естественной теплоотдачи при работе механизма.
Электродвигатель обычно нагревается от трения, а еще из-за электрических и магнитных сил, действующих на него в процессе работы. К примеру, энергозатраты работы мотора составили 100 рублей, а механическая энергия была оценена в 80 рублей. В данном случае КПД электродвигателя будет равен 80%.
Чтобы охладить электрический двигатель, существуют специальные вентиляторы, прогоняющие воздух через работающий мотор и тем самым создающие более оптимальную температуру для его работы.
Степень нагрузки оказывает огромное влияние на работу электродвигателя. Без нагрузки мотор работает с КПД, равным 0%. Если нагрузить двигатель на 25%, то КПД будет равняться 83%. В режиме стопроцентной нагрузки КПД будет равен 87%.
Причины падения эффективности
Существует много показателей, уменьшающих КПД электродвигателя. К счастью, есть способы определить, из-за чего именно упал коэффициент полезного действия. Например, можно отследить наличие зазора, который частично сообщает мощность от электросети к статору, а потом передает на ротор. В стартере также могут быть потери энергии.
Также встречается утечка энергии из-за вихревых токов и перемагничивания сердечников статора. В асинхронном двигателе также встречаются потери из-за зубцов в роторе и статоре. В некоторых узлах мотора могут появиться вихревые токи. По таким причинам КПД может понизиться на половину процента. Асинхронные двигатели строятся с учетом этих особенностей, и КПД в таких моторах составляет от 80 до 90 процентов.
Элементы, влияющие на мощность
Электродвигатели имеют некоторые минусы, которые неудовлетворительно влияют на производительность работы. К числу особо неприятных моментов относят:
- слабый электропусковой механизм,
- сильный уровень пускового тока;
- неслаженность машинного вала с нагрузкой.
Перечисленное приводит к тому, что полезное действие приспособления понижается. Для увеличения результативности стремятся обеспечить нагрузку движка до 75 процентов и повышать пропорции мощности. Также существуют специальные аппараты для регулирования диапазонов подаваемого тока и его мощности, что также ведёт к росту эффективности и КПД.
Одним из наиболее известных устройств для роста отдачи электродвигателя считается механизм мягкого пуска, который ограничивает быстроту роста стартерного тока. Также можно применять и преобразователи частоты для перемены скорости вращения двигателя посредством перемены частоты напряжения. Перечисленное ведёт к уменьшению трат электроэнергии и осуществляет мягкий старт движка, высокую точность балансировки. Кроме того возрастает пусковой момент, а при неустойчивой нагрузке стабилизируется быстрота движения. В итоге производительность двигателя возрастает.
Предельный показатель функциональности
Исходя из разновидности конструкции, коэффициент ПД в электродвигателях может колебаться в пределах 10 — 99 процентов. Все зависит от конкретного типа двигателя. К примеру, отдача двигателя насоса поршневого вида достигает 70−90%. Окончательный эффект зависит от изготовителя, структуры устройства и проч.
То же самое справедливо будет отнести и к КПД двигателя подъемного крана. Когда это значение повышается до 90%, означает, что 90% расходуемой электроэнергии уходит на совершение машинной работы, а оставшиеся проценты — на нагревание деталей. Все же есть особенно успешные модели двигателей, коэффициент ПД которых доходит практически до 100%, однако не равен указанному значению.
Бывает ли значение выше 100%
Всем известно, что электродвигатели, эффективность которых превосходит 100%, невозможны согласно законам природы, поскольку это противоречит главному закону сохранении энергии. Все объясняется тем, что энергия не берется из ниоткуда и никуда не исчезает. Поэтому каждый двигатель имеет необходимость в источнике энергии. Ими могут быть:
- топливо;
- электричество;
- солнечный свет и т. д.
Но при этом ни один из перечисленных источников не вечен, к тому же запасы каждого необходимо аккумулировать. Однако если бы имелся источник энергии, нуждающийся в сборе и аккумуляции, то вполне вероятно было бы создание движка, полезное действие которого было бы более 100%.
Гидроэлектростанция — прототип вечного механизма
Если рассмотреть принцип работы гидроэлектростанции, то можно увидеть, что электричество вырабатывается в ней за счет воды, которая падает с большой высоты. Электроэнергия производится турбиной, которую вращает падающая вода. Вода стремится вниз благодаря земному притяжению.
Оно действует постоянно, не ослабевая и не пропадая. После того как вода выработала некоторое количество энергии, она превращается в пар и естественным образом возвращается в водохранилище. Это может повторяться много раз. Как следствие — электрическая энергия вырабатывается без потери ресурсов.
Солнце нагревает землю, участвуя в испарении воды, гравитация совершает двойную работу, участвуя в падении воды, а также в производстве осадков — ведь именно из-за притяжения земли вода из облаков стремится упасть вниз. В целом получается, что гидроэлектростанция — это механизм, преобразующий энергию падения воды в электрическую с коэффициентом полезного действия больше ста процентов.
Из этого видно, что поиски двигателя с КПД больше 100% небеспочвенны, потому что есть и другие ресурсы, кроме гравитации, которые невозможно исчерпать.
Постоянные магниты — производители электроэнергии
Постоянный магнит может также явиться интересным предметом для получения энергии, ведь она не поступает к нему извне, а магнитное поле остается неизменным даже после того, как работа уже совершена.
Магнит имеет свойство притягивать различные вещи из железа и его сплавов. Притянув к себе некий предмет, он не расходует свою энергию, это просто свойство, которым он обладает и которое не может исчерпать. Поэтому на основе магнитов можно было бы сделать двигатель, близкий к вечному. Безусловно, нельзя не принимать во внимание изнашиваемость деталей, но сам принцип работы магнита создает условия для постоянной работы без растраты средств.
Правда, некоторые ученые считают, что со временем магнит теряет свои свойства. Это непроверенная информация, но не учитывать такой поворот событий тоже нельзя.
На основе магнитов много раз пытались создать подобие вечного двигателя, но пока эти попытки ни к чему не привели. Конечно, хочется верить, что в обозримом будущем учёные сделают прорыв и изобретут двигатель, который будет работать на возобновляемой энергии.
Интересно, что один из отечественных изобретателей — В. Чернышов — недавно продемонстрировал описание мотора, основанного на статичном магните, и его КПД, как удостоверяет сам экспериментатор, равняется более чем 100%.
Коэффициент ПД электродвигателя — это чрезвычайно важный показатель, который обусловливает производительность работы какого-либо движка. Чем его показатель выше, тем эффективнее движок. В моторе с КПД 95% почти вся затрачиваемая мощность расходуется на осуществление работы и всего 5% тратится не на требуемое действие (к примеру, на разогрев частей). Нынешние дизельные двигатели способны добиваться значения КПД 45%. Коэффициент маленький, но тем не менее он считается одним из самых производительных. КПД карбюраторных двигателей, работающих на бензине, еще более низкий.
КПД электродвигателя
Коэффицент полезного действия электродвигателя
Правильный выбор электродвигателя напрямую связан с его КПД, потери КПД электродвигателя это бич промышленности и производства. Реактивные токи, сильный нагрев электродвигателя, понижение мощности и в целом складывается потеря КПД электродвигателя.
В любом электродвигателе электрическая энергия с потерей мощности превращается в механическую энергию. Потери складываются из нескольких факторов, которые я перечислю ниже.
Причины полных потерь КПД в электродвигателе
1. Магнитные (в железе статора и ротора перемагничивание, плюс еще и вихревые токи)
2. Электрических ( обмотки статора и ротора)
3. Механические потери (трение подшипников и т.д.)
КПД (коэффициент полезного действия электродвигателя) это – сравнивание отдаваемой механической энергией электродвигателя с потребляемой электродвигателем электрической энергией. Более проще звучит так, скушал электричества на три рубля, а отдал на рубль, да еще и нагрелся.
Для электродвигателя с коротко замкнутым ротором мощностью 1-17 kW КПД, как правило, равно 0.78 – 0,87, для тех кто не слишком в теме чуть разъясню. Для двигателя в 15 kW потеря в 1950 ватт считается нормой. Для любопытных поясняю эта электроэнергия преобразуется в тепло в результате, которого электродвигатель нагревается.
Охлаждение электродвигателя происходит с помощью вентилятора, который прогоняет воздух через специальные воздушные зазоры. Допускаемая норма нагрева электродвигателя класса А порядка 85 – 90С для класса В 110С градусов . Из своего опыта могу сказать если при прикосновении рука терпит , значит этот двигатель еще поработает, ну а если руку нельзя держать больше двух секунд то дело плохо и межвитковое замыкание статора уже совсем близко. Охлаждение электродвигателя это тема для другой статьи и мы к ней еще вернемся.
КПД Эл. Двигателя также зависит от нагрузки и зависимости от нагрузки меняет свое значение.
Холостой ход – КПД 0
1/4 нагрузки — КПД 0,83
1/2 нагрузки — КПД 0,87
3/4 нагрузки – КПД 0,88
Полная нагрузка — КПД 0,87
Если в сети асимметрия токов то это тоже фактор снижения КПД электродвигателя. (на трех фазах разный вольтаж) Ниже на таблице приведен пример.
Многие спрашивают от чего зависит КПД электродвигателя? — из выше перечисленных фактов мы познакомились с этим термином, в общих чертах. Для каждого типа электродвигателя свои параметры, влияющие на его коэффициент полезного действия. Прежде чем устанавливать электрооборудование необходимо просчитать все факторы, негативно влияющие на КПД электродвигателя.
Анонс : Для любителей все делать своими руками предлагаем статью Сложный ремонт дрели зачем нести в мастерскую когда можно отремонтировать самому.