0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое момент на валу электрического двигателя

Приведение статических моментов сопротивления к валу электродвигателя. Определение приведенного момента инерции электропривода.

Приведение статических моментов сопротивления к валу электродвигателя

Процесс приведения будем рассматривать на примере кинематической схемы механизма подъема крана .

Кинематическая схема механизма подъема крана.

Для того чтобы перемещать груз с массой m со скоростью vио к нему должна быть приложена механическая мощность Pио, равная произведению усилия, развиваемого при подъеме и скорости.

Во всех частях электропривода существуют потери, которые учитываются с помощью КПД. В нашей кинематической схеме суммарный КПД равен произведению КПД барабана на КПД редуктора.

В соответствии с законом сохранения энергии, необходимый момент, развиваемый двигателем должен обеспечивать необходимую мощность для перемещения груза.

Поделив обе части уравнения на ω, получим:

Mс – момент сопротивления производственного механизма, приведен к валу двигателя от сил, совершающих поступательное движение.

vио/ω = ρ – радиус приведения.

Для того чтобы привести к валу двигателя моменты, действующие при вращательном движении рабочего органа, используем:

I = ω/ωб – передаточное число.

Чтобы привести к валу двигателя статические моменты, действующие в электродвигателе, не нужно знать тип передачи и количество ступеней передачи, а достаточно знать отношение скоростей на входе в привод и на его выходе – скорость вращения барабана.

Приведенный к валу двигателя статический момент исполнительного органа производственного механизма называется моментом сопротивления и обозначается Mс.

Определение приведенного момента инерции электропривода

В отличие от определения статического момента, для приведения динамического момента необходимо знать параметры механической передачи и тип передачи. Принцип приведения основан на том, что величина суммарного запаса кинетической энергии всех движущихся частей электропривода, приведенных к валу двигателя, остается неизменной.

J1 – момент инерции всех элементов привода, вращающихся со скоростью ω.
J2 – момент инерции всех частей привода, совершающих вращательное движение со скоростью ωб.

Для приведения суммарного момента инерции к валу двигателя нужно знать моменты инерции всех вращающихся элементов электрического привода и отношение скоростей между скоростью вращения двигателя и скоростью вращения элемента привода. Если они вращаются с разными скоростями, то момент инерции нужно разделить на передаточное число в квадрате, а момент инерции от массы всех частей электропривода, совершающих поступательное движение, для приведения умножить на квадрат радиуса приведения.

Приведение статических моментов к валу электродвигателя

В простых по устройству механизмах рабочий орган соединен с электродвигателем непосредственно (напрямую). Например, в электроприводе насоса его крыльчатка закреплена непосредственно на валу электродвигателя. В этом случае статический момент, созданный крыльчаткой насоса, равен полезному моменту на валу электродвигателя. То есть, передача энергии от электродвигателя к насосу происходит без потерь. В более сложных по устройству механизмах, например, лебедках, брашпилях и т.п. используют передачи (редукторы). В этом случае в передаче возникают потери энергии, в результате чего статический момент механизма и полезный момент двигателя неодинаковы (больше полезный момент двигателя).

Механическая часть электропривода может быть сложной кинематической системой с большим количеством элементов. Каждый из элементов обладает упругостью, т.е. деформируется под нагрузкой, а в соединениях имеются воздушные зазоры. В инженерных расчётах можно пренебречь зазорами и упругостью элементов и принять механические связи между элементами абсолютно жёсткими.

При таком допущении движение одного элемента полностью характеризует движение всех элементов устройствэлектропривода, поэтому движение в электроприводе можно рассматривать на движении одного любого элемента. чил.27

Замена механической системы, в которой элементы с разными массами совершают вращательное и поступательное движения с разными скоростями, на один эквивалентный элемент (звено),движущийся с одной скоростью, называется п р и в е д е н и е м. чек.15

В качестве такого элемента, чаще всего, принимают вал двигателя, а все вращающиеся и поступательно движущиеся элементыприводят к скорости вращения вала двигателя, хотя в общем случае, скоростью приведения может быть скорость любого элемента. Для сохранения неизменными свойств реальной системы, приведение проводится с учётом постоянства запаса кинетической энергии системы до и после приведения.

Расчёт механической части электропривода сводится к расчёту движения обобщённого механического элемента, имеющего эквивалентную массу с приведенным моментом инерции , на эту массу воздействуетэлектромагнитный момент двигателяМ и(суммарный)приведенныйк скорости вала двигателя, статический момент(момент сопротивления) механизма М .

Статический момент(момент сопротивления) механизма М включает все механические потери в электроприводе, в том числе и механические потери в двигателе.чил.28.

Статический момент (момент сопротивления) механизма, возникающий на валу рабочей машины, включает две составляющих:

1) первую, которая соответствует полезной работе, выполняемой механизмом (например преодоление силы тяжести груза);

2) вторую, которая соответствует работе трения и преодоления сил инерции.

Так как конечной целью расчёта сложных систем является выбор электродвигателя, то следует определить момент, который должен развивать двигатель для обеспечения установившегося (статического) режима работы.

Электропривод будет работать в установившемся(статическом) режиме (т.е. с постоянной скоростью), если момент двигателя будет равен по абсолютной величине и противоположно направлен статическому моменту сопротивления механизма.Чек.18

Рассмотрим расчёт по выбору электродвигателя на примере упрощенного электропривода лебёдки, состоящего из электродвигателя , М одноступенчатого редуктора Ри грузового барабана Б (рис. 1.3).

Читать еще:  Холостой ход двигатель 75 квт

Рис. 1.3. Кинематическая схема электропривода лебёдки: М – электродвигатель, Р– редуктор, Б – грузовой барабан

Пусть предварительно заданы параметры механизма и передачи, а именно: статический момент (сопротитвления) механизма М , коэффициент полезного действия передачи –ηи её передаточное число – ί. При работе подьёмника основная часть мощности от двигателя предаётся на грузовой барабан, но её незначительная часть теряется на трение в редукторе и преодоление сил инерции во всех устройствах электропривода.

Мощность на валу электродвигателя

Р = ω М (2-3)

Мощность на валу механизма

Р = ω (2-4)

Мощности Р и Р связаны через коэффициент полезного действия передачи:

η = (2-5)

Подставим в формулу (2-5) правые части формул ( 2-3 ) и ( 2-4 ):

η = (2-6)

Из выражения (2-6) найдем статический момент (момент сопротитвления) механизма М (2-7), это тот же статический момент (момент сопротитвления) механизма, но приведенный к скорости вала электродвигателя

М = = ,(2-7),

М = .

где: ί = – передаточное число передачи (редуктора).

Таким образом статический момент механизмаМ , через кпд –ηпередачи и передаточное число редуктора – ί, привели к скорости вращения вала двигателя.

Если между двигателем и механизмом имеется несколько передач с передаточными числами , ,…., и соответствующими КПД , . статический момент (момент сопротитвления) механизма, приведенный к скорости вала двигателя, определяется формулой (2-8)

Научная электронная библиотека

Семенов С. Е., Щербачев П. В., Тарасов О. И.,

Выбор передаточного отношения редуктора в передаче

В современной технике широко используются типовые схемы для приводов на основе механических редукторов с большим передаточным отношением [24]. При этом для поворота выходного вала на заданный угол, вал электродвигателя должен сделать достаточно большое число оборотов. В этом случае время разгона и торможения электродвигателя мало относительно времени установившегося режима работы. На рис. 4 приведены примеры графиков переходных процессов по углу (верхний график) и по скорости (нижний график) вала электродвигателя подобной следящей системы. Здесь t1 – время разгона вала, t2 – время работы электродвигателя на максимальных оборотах, t3 – время торможения .

В данном случае потери энергии на разгон привода и его торможение будут значительно меньше, чем в процессе установившейся работы, поэтому ими пренебрегают и используют такие методы управления, как бездатчиковая система управления, либо система управления с датчиком скорости на основе счетчика импульсов. В таких системах управления слабыми местами являются старт и работа на низких оборотах (приблизительно 10 % от номинальных) в связи с неточностью определения положения ротора. Эта неточность обусловлена недостаточной величиной противо-ЭДС, генерируемой электродвигателем, в случае бездатчиковой системы, либо, в случае использования датчика угловой скорости, слишком редким чередованием импульсов с датчика скорости при значительном угловом ускорении двигателя [24]. Увеличение передаточного числа редуктора
и установка высокооборотного двигателя той же мощности снижают негативный вклад переходных процессов (разгона и торможения) на количество затраченной энергии за весь цикл перемещения выходного звена из одного положения в другое.

Рис. 4. Переходный процесс следящей системы
с высоким коэффициентом редукции

К сожалению, увеличение передаточного числа редуктора снижает КПД передачи за счет увеличения числа пар трения и количества зубчатых зацеплений. Особенно сильно это проявляется в малогабаритных системах. Оценить это можно на примере линейки редукторов компании Harmonic Drive (рис. 5). Данная компания является одной из лидирующих на рынке малогабаритных редукторов, а их продукция имеет высокие массогабаритные и энергетические характеристики .

Из этих графиков видно, что для увеличения КПД системы следует снижать передаточное число редуктора до минимально возможного, ограниченного возможностями электродвигателя. Сам электродвигатель, в данном случае, следует выбирать низкоскоростной и высокомоментный.

Рис. 5. Примеры графиков зависимости КПД от момента для редукторов одного типоразмера, но разного передаточного отношения i линейки малогабаритных редукторов фирмы Harmonic Drive

Еще одним критерием выбора передаточного отношения редуктора может быть максимальное развиваемое угловое ускорение на выходном валу передачи. Особенно актуально это в случае использования такого привода в системах с обратной связью по положению, которые часто используются в роботизированных комплексах. Для вывода этого критерия вычислим угловые ускорения выходных валов передач для двух двигателей с одинаковой номинальной мощностью Pном и одинаковой нагрузкой на выходной вал передачи Jн2 = Jн1 и Mвнешн2 = Mвнешн1, но установленными редукторами с разным передаточным отношением i1 и i2 (i1 > i2)

, (1)

угловое ускорение выходного вала передачи;

угловое ускорение ротора электродвигателя;

передаточное отношение редуктора.

Угловое ускорение вала двигателя вычисляется по формуле

(2)

момент внешней нагрузки на выходной вал передачи;

приведенный момент инерции системы к валу ротора электродвигателя.

Он вычисляется по формуле [4]

(3)

момент инерции ротора электродвигателя;

момент инерции подвижных частей редуктора, приведенный к быстроходному валу передачи;

момент инерции нагрузки.

Обобщив вышеприведенные формулы с (1) по (3) получим выражение для ускорения выходного звена передачи с большим коэффициентом редукции i1 и малым коэффициентом редукции i2

(4)

Так как двигатели одинаковой номинальной мощности и на выходных валах двух рассматриваемых передач момент должен быть одинаковый, то момент на валу высокомоментного электродвигателя Mэд2 можно вычислить следующим образом

(5)

Подставив условия одинаковой нагрузки и выражение (5) в выражения (4), получим, что для достижения одинаковых величин ускорений на выходном валу передачи необходимо, чтобы выполнялось следующее условие

Читать еще:  Форсунки на двигатель ямз как снимать

(6)

Исходя из выражения (6), можно сформулировать критерий: пока отношение суммы моментов инерции ротора высокомоментного электродвигателя и редуктора с низким передаточным отношением к сумме моментов инерции ротора высокооборотистого электродвигателя и редуктора с высоким передаточным отношением меньше квадрата отношения передаточного числа редуктора c большим передаточным отношением к передаточному числу редуктора с низким передаточным отношением угловое ускорение на валу передачи с высокомоментным двигателем будет выше.

Необходимо отметить, что в вышеприведенных расчетах не учитывались КПД двигателей и редукторов. Как писалось выше с ростом передаточного числа редуктора его КПД снижается, а КПД электродвигателя снижается не значительно [31].

В качестве примера рассмотрим механические передачи на основе малогабаритных планетарных редукторов фирмы Harmonic Drive. Выберем один редуктор с передаточным отношением i1 = 45 (HPG-11-A-45) и второй с передаточным отношением i1 = 5 (HPG-11-A-5). Для них подберем индукторные электродвигатели фирмы Maxon Motor: электродвигатель № 475522 и № 148877 соответственно. Получились две передачи с характеристиками, представленными в табл. 2.

Если подставить величины, приведенные в табл. 2 в выражение (4), то для этих двух передач можно построить график зависимости углового ускорения на выходном валу передачи в зависимости от установленного на этот вал момента инерции (рис. 6) и график зависимости отношения углового ускорения на выходном валу передачи с высокомоментным двигателем к угловому ускорению на выходном валу передачи с высокооборотистым двигателем от установленного на эти валы момента инерции Jн (рис. 7).

Характеристики механических передач

Передаточное отношение редуктора

Максимальный КПД редуктора

Момент инерции вращающихся частей редуктора, приведенный к быстроходному валу

Номинальный момент на валу электродвигателя

Номинальная мощность электродвигателя

Момент инерции ротора электродвигателя

Максимальный КПД электродвигателя

Рис. 6. График зависимости углового ускорения на выходном валу передачи в зависимости от установленного на этот вал момента инерции

Рис. 7. График зависимости отношения угловых ускорений ε2/ε1 на выходном валу передач от установленного на эти валы момента инерции

Из рис. 7 видно, что, начиная с некоторой величины момента инерции нагрузки, отношение становится меньше единицы, а это означает, что передача с редуктором с большим коэффициентом редукции начинает обгонять передачу с низким коэффициентом редукции. Для данных передач эта величина равна 28795 гм∙см2, что более чем в 200 раз превышает момент инерции вала высокомоментного электродвигателя. Это возникает в результате того, что на практике не удается подобрать два электродвигателя одинаковой мощности с подходящими номинальными моментами для имеющихся редукторов и в данном случае высокомоментный двигатель имеет мощность меньшую, чем высокоскоростной.

Исходя из того, что большее значение КПД передачи будет достигаться при меньших значениях коэффициента редукции и из того, что выходной вал передачи с низким передаточным отношением будет развивать большие угловые ускорения (в вышеописанных пределах момента инерции ротора двигателя и редуктора) для рассматриваемых в этой статье задач следует строить передачи на основе редукторов с низким передаточным отношением.

В рассматриваемом случае время разгона и торможения электродвигателя будет сравнимо с временем работы двигателя на номинальном режиме, а потерями энергии во время этих процессов пренебрегать нельзя. В связи с этим, пользоваться теми же методами, что и в случае с редуктором с большим передаточным отношением нельзя, а необходимо применять методы для снижения потерь энергии на разгонных режимах работы электродвигателя. Одним из способов решения данной проблемы является установка датчика абсолютного углового положения ротора или комбинации датчиков, выполняющих данную задачу. Это позволит с высокой точностью контролировать положение ротора электродвигателя для задания вектора магнитного поля. Кроме того, такой датчик, по понятным причинам, должен быть многооборотным. К наиболее распространенным типам датчиков, обладающих такими характеристиками, можно отнести следующие:

1. Синусно-косинусный вращающийся трансформатор (резольвер).

2. Поворотный дифференциальный трансформатор (RVDT) в комбинации с датчиками Холла.

3. Цифровой оптический датчик.

Каждый тип датчиков имеет свои преимущества и недостатки при одинаковых точностных характеристиках. Цифровые оптические датчики имеют минимальные шумовые характеристики и имеют наиболее простую схему обработки выходного сигнала, но плохо устойчивы к ударным нагрузкам и не могут работать случае погружения в масло (особо актуально для гидравлических передач). Поворотные дифференциальные трансформаторы имеют ограниченный диапазон измерений в 180 градусов, который можно расширить, установив дополнительные дискретные датчики, которые будут указывать в какой четверти окружности находится в данный момент вал электродвигателя. Синусно-косинусный вращающийся трансформатор для исключения контакта между статором и ротором требует дополнительно кольцевой трансформатор для передачи питающего напряжения на ротор, что увеличивает его габаритные размеры, но обладает рабочим диапазоном в 360 градусов и устойчив к ударно-вибрационным нагрузкам.

В случае системы с механическим редуктором (жесткая связь между углом выходного вала редуктора и угла вала электродвигателя) такой датчик может быть установлен в трех вариантах расположения:

На выходном валу редуктора (рис. 8). К преимуществам данной схемы можно отнести максимально высокую точность контроля параметров на выходном валу передачи: угла поворота и скорости вращения. К недостаткам – сниженную точность определения угла поворота вала электродвигателя за счет снижения на коэффициент редукции точности датчика угла на выходном валу и люфтов в редукторе, что ведет к снижению КПД системы на малых скоростях вращения.

Читать еще:  Горит чек на приоре двигатель работает стабильно

Рис. 8. Датчик угла расположен на выходном валу редуктора

На валу электродвигателя (рис. 9). Эта схема имеет максимальную точность определения угла поворота вала ротора электродвигателя, что позволяет эффективно управлять электродвигателем. Но, к сожалению, не дает абсолютное значения угла поворота выходного вала в случае, если для достижения крайних значений углов на выходном валу редуктора электродвигателю необходимо сделать больше одного оборота вала. В этом случае в начале работы следящей системы необходимо проводить уточнение начального положения выходного звена (к примеру, повернуться до какого-либо крайнего положения и осуществить привязку).

На валу электродвигателя и на выходном валу редуктора (рис. 10). Данная схема позволяет с максимальной эффективностью управлять электродвигателем и контролировать параметры выходного вала редуктора, но обладает повышенной стоимостью и габаритными размерами. В данной схеме датчик на валу электродвигателя служит исключительно для определения его углового положения для нужд драйвера электродвигателя, а датчик на выходном валу редуктора для замыкания обратной связи всей следящей системы.

Рис. 9. Датчик угла расположен на валу электродвигателя

Рис. 10. Установлен датчик угла на выходном валу электродвигателя
и на валу электродвигателя

Крутящий момент редукторов

Крутящий момент редуктора является одним из важнейших параметров устройства. Именно этот показатель позволяет увеличить характеристики принимающего устройства и достичь нужной мощности. Разберемся, как меняется значение в зависимости от вида механизма и как правильно рассчитать требуемые параметры.

Крутящий момент с учетом вида редуктора

Любой редуктор снижает обороты, передаваемые на вал, в определенное количество раз. Именно этот показатель определяется как передаточное число. Но не менее важным является вращающий момент на выходном валу, который показывает величину, обеспечивающую безопасную передачу мощности.

Допустимые значения определяются различными факторами. Например, в устройствах одного типоразмера цифра зависит от разности диаметров. В червячных моделях радиус колеса и червяка почти всегда неизменны, поэтому сила воздействия создается за счет количества зубьев.

По типу передачи различают следующие разновидности редукторов:

  • цилиндрические (одноступенчатые и многоступенчатые);
  • конические;
  • червячные;
  • планетарные.

Все перечисленные разновидности относятся к числу однотипных. Однако кроме них существуют и комбинированные механизмы, в которых вращение передается между двумя валами, перекрещивающимися или пересекающимися между собой.

Как правило, более высокий номинальный крутящий момент у редукторов планетарного типа. Цилиндрические механизмы, которые востребованы в промышленности, также передают повышенные мощности. Простые по конструкции червячные устройства имеют более низкий КПД, что связано с большими потерями на трение. Последняя разновидность – конические устройства – имеют достаточно плавное зацепление и передают большую мощность под углом 90 градусов.

Еще один показатель, который может повлиять на вращающий момент, – это количество ступеней. Для повышения передаваемой мощности число ступеней может увеличиваться. В цилиндрических редукторах для увеличения показателя применяются шестерни разных диаметров. В червячных устройствах на шестерне изменяется количество зубцов.

Расчет крутящего момента редуктора являются одной из наиболее сложных процедур для выбора механизма. Этот показатель косвенно отражает способность привода выдержать определенные нагрузки. Ошибки при определении величины могут привести к преждевременному выходу оборудования из строя. Также возможны и менее критичные проблемы вроде постоянного перегрева и сложностей с установкой. Поэтому перед выбором механизма необходим тщательный анализ имеющихся факторов и применение специальной формулы.

Формула расчета

Основная проблема, с которой можно столкнуться, заключается в том, как рассчитать крутящий момент редуктора. Начнем с того, что такой параметр измеряется в Ньютон-метрах. То есть, если к выходному валу прикрепить штангу длиной около 1 метра, то привод должен будет поддерживать работоспособность, равную 1 Ньютону. Если нагрузка прикладывается ближе к оси выходного вала, то показатель должен быть больше.

Стоит отметить, что различают несколько видов вращающего момента:

M2 – показатель на выходном валу.

Mn2 – номинальный показатель, характеризующий ту мощность, которую может передавать механизм.

Mr2 – требуемый момент, которые обычно равняется номинальному.

M2max – максимальный показатель, который передается в момент ускорения.

Mc2 – расчетная мощность, которая рассчитывается с учетом необходимого и номинального момента, а также сервис-фактора (Sf).

Для расчета максимально возможного крутящего момента используется формула следующего типа:

Р – мощность двигателя (измеряется в кВт);

N – показатель КПД (в среднем составляет от 0,94 до 0,98);

U – передаточное число;

nвх – обороты входного вала (за 1 минуту);

К – коэффициент, который определяется с учетом режима использования редуктора.

При расчетах важно учесть, что получаемый показатель не должен быть больше того, что указывается в технических параметрах механизма.

Что касается крутящего момента, определяемого на выходе редуктора (M2), то этот показатель можно получить, умножив номинальный параметр (Mn2) на передаточное число устройства.

Надеемся, что вы разобрались с правилами определения вращающего момента редуктора и сможете самостоятельно рассчитать этот показатель. А если у вас возникнут сложности, то специалисты нашей компании «Ф и Ф» обязательно помогут выбрать механизм с учетом имеющихся потребностей!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector