Что такое мягкий запуск двигателя
§80. Пуск в ход асинхронных двигателей
При пуске двигателя в ход должны по возможности удовлетворяться следующие основные требования: процесс пуска должен быть простым и осуществляться без сложных пусковых устройств, пусковой момент должен быть достаточно большим, а пусковые токи — по возможности малыми. Иногда к этим требованиям добавляются и другие, обусловленные особенностями конкретных приводов, в которых используются двигатели: необходимость плавного пуска, наибольшего пускового момента и пр. Практически используются следующие способы пуска: непосредственное подключение обмотки статора к сети (прямой пуск); понижение напряжения, подводимого к обмотке статора при пуске; подключение к обмотке ротора пускового реостата.
Прямой пуск применяется для пуска асинхронных двигателей с короткозамкнутым ротором. Двигатели этого типа малой и средней мощности обычно проектируют так, чтобы при непосредственном подключении обмотки статора к сети возникающие пусковые токи не создавали чрезмерных электродинамических усилий и превышений температуры, опасных с точки зрения механической и термической прочности основных элементов машины. Однако при прямом пуске двигателей большой мощности, особенно при подключении их к недостаточно мощным электрическим сетям, могут возникать чрезмерно большие падения напряжения (свыше 10—15%). В этом случае прямой пуск для двигателей с короткозамкнутым ротором не применяют и пускают их при пониженном напряжении.
Прямой пуск асинхронного двигателя широко применяют в технике. Недостатками его являются большой пусковой ток и сравнительно небольшой пусковой момент.
Пуск при пониженном напряжении применяется для пуска асинхронных двигателей с короткозамкнутым ротором большой мощности, а также для двигателей средней мощности при недостаточно мощных электрических сетях. Понижение напряжения осуществляется следующими способами:
переключением обмотки статора при пуске с рабочей схемы «треугольник» на пусковую схему «звезда». В этом случае фазное напряжение, подаваемое на обмотку статора, уменьшается в ?З раз, что обусловливает уменьшение фазных токов в ?З раз и линейных токов в 3 раза. По окончании процесса пуска и разгона двигателя до номинальной частоты вращения обмотку статора переключают обратно на схему «треугольник»;
включением в цепь обмотки статора на период пуска добавочных резисторов или реакторов. При этом на указанных аппаратах создаются некоторые падения напряжения ?U, пропорциональные пусковому току, вследствие чего к обмотке статора будет приложено пониженное напряжение U1 — ?U. По мере увеличения частоты вращения ротора двигателя уменьшается э. д. с, индуцированная в обмотке ротора, а следовательно, и пусковой ток. В результате этого уменьшается падение напряжения ?U и автоматически возрастает приложенное к двигателю напряжение;
подключением двигателя к сети через понижающий автотрансформатор. Последний может иметь несколько ступеней, которые в процессе пуска двигателя переключаются соответствующей аппаратурой.
Недостатком всех указанных способов является значительное уменьшение пускового и наибольшего моментов двигателя, которые пропорциональны квадрату приложенного напряжения. Поэтому они могут применяться только при пуске двигателя без нагрузки.
Пуск с помощью пускового реостата применяется для двигателей 1 с фазным ротором (рис. 265, а). Пусковой реостат 2 обычно имеет четыре — шесть ступеней, что позволяет в процессе пуска постепенно уменьшать пусковое сопротивление Rп, поддерживая высокое значение пускового момента на все время, разгона двигателя. При пуске предварительно устанавливают пусковой реостат в положение, при котором он имеет максимальное
Рис. 265. Схема включения асинхронного двигателя с пусковым реостатом (а) и механические характеристики двигателя при пуске (б)
сопротивление Rп4 = Rп max, после чего подключают обмотку статора к сети трехфазного тока. При этом двигатель пускается по характеристике 4 (рис. 265,б) и развивает в начале пуска вращающий момент Mпmax.
4 типа пуска электродвигателя
Эксплуатация асинхронных электрических двигателей тесно связана с необходимостью ограничения пусковых токов для сохранности моторов. Ограничение величины пусковых токов осуществляется в ходе выбора той или иной схемы запуска электродвигателя. На практике широко используются следующие типы запуска двигателя:
- прямой пуск;
- плавный пуск;
- звезда-треугольник;
- частотное регулирование.
Рассмотрим каждый из представленных выше способов пуска асинхронного электродвигателя более подробно.
Прямой пуск
Это наиболее популярный способ включения асинхронного электрического двигателя. Требуется всего одно действие – включение мотора в электросеть на зафиксированной частоте и номинальном напряжении тока. После прямого запуска электромотор начинает набирать обороты с высокой скоростью. Главное достоинство этой схемы – выгода с экономической точки зрения. Прямой пуск можно выполнять без использования иных устройств, на установку которых нужны дополнительные средства. Есть у этого типа запуска и недостатки.
Прямой пуск подходит исключительно для маломощных моторов, т. к. их пусковые токи не настолько большие, как у более мощных собратьев (моторов, приводов и т.д.). Тем не менее, даже эти токи оказывают большую нагрузку на электрическую сеть, ведь они могут в 10 и более раз превышать номинальные, что негативно сказывается на кабелях, питающих мотор, и на электросети в целом. Высокие токи плохо влияют и на обмотку самого мотора
Плавный пуск
Плавное включение электрического мотора возможно при наличии устройства плавного пуска (софтстартера). Его задачей является удержание параметров двигателя в безопасных рамках на протяжении всего времени запуска. Такое устройство исключает перегрев мотора, разрушение обмоток и негативное воздействие на питающую сеть.
Можно использовать софтстартеры механического и электрического, а также комбинированного типа. Первые имеют вид жидкостных муфт, тормозных колодок либо блокировок, использующих силу магнетизма. Они имеют простую конструкцию и отличаются высокой надежностью, однако имеют ограниченный функционал. Устройства электрического типа позволяют регулировать параметры мотора в ходе пуска более широко и постепенно.
Звезда-треугольник
Схема «звезда-треугольник» подразумевает двухэтапное безопасное подключение электрического двигателя:
- Сперва мотор запускается в рамках схемы «Звезда», которая подразумевает использование низких пусковых токов. Некоторое время двигатель питается по этой схеме и плавно набирает обороты.
- После набора определенного числа оборотов в минуту мотор переключается на схему «Треугольник», которая требует для работы высокие пусковые токи. Здесь двигатель выходит на проектную мощность.
Для реализации данной схемы пуска потребуется трехполюсный выключатель, три контактора, тепловое реле и реле времени. Преимущества этого типа запуска аналогичны преимуществам плавного пуска, описанного выше.
Частотное регулирование
Под частотным регулированием понимание использование частотно-управляемого привода. Данное устройство регулирует частоту вращения ротора электромотора. В конструкцию частотного преобразователя входит инвертор и выпрямитель. К преимуществам запуска двигателя через частотное регулирование относится большой выбор значений для регулировки количества оборотов, увеличение ресурса мотора, максимальный пусковой момент и экономия электрической энергии по сравнению с другими способами запуска мотора.
Недостатки у частотного регулирования также имеются. Это сравнительно высокая цена преобразователей для мощных моторов, а также высокий уровень помех, которые наблюдаются поблизости от этих устройств.
Частотно-регулируемые приводы и устройства плавного пуска: грамотный подход к выбору необходимого оборудования
Во всем мире, в том числе и в нашей стране, на сегодняшний день является актуальной задача преобразования электрической энергии в механическую. Для этой задачи используются различные электроприводы, позволяющие управлять работой синхронных и асинхронных двигателей, которые в свою очередь приводят в движение необходимый механизм, будь то насос или конвейер. Для решения этих задач может применяться разное оборудование — в основном это частотно-регулируемый привод и устройство плавного пуска. В этой статье будут рассмотрены основные принципы работы этого оборудования, а также рекомендации по выбору нужных приборов для решения производственных задач.
Начнем с терминологии.
Частотно-регулируемый привод (ЧРП, частотный преобразователь, ПЧ) это устройство для управления синхронным и асинхронным двигателем, состоящее из двух основных функциональных модулей:
- Выпрямитель (моста постоянного тока) — преобразует переменный ток промышленной частоты и амплитуды в постоянный.
- Инвертор — осуществляет преобразование постоянного тока в переменный нужной частоты и амплитуды.
В результате двигатель сохраняет номинальный момент на валу и движется с необходимой скоростью.
Устройство плавного пуска (УПП) — устройство для плавного безударного пуска с ограничением пускового тока, длительной работы в номинальном режиме и торможения высоковольтных асинхронных электродвигателей.
Итак, остановимся подробнее на выборе устройств.
Выбор частотно-регулируемого привода
При выборе модели ЧРП необходимо обратить внимание на следующие моменты.
Чем шире мощностной ряд, тем больше механизмов, которыми можно будет управлять с помощью данного ЧРП. Сохраняется тип подключения, опциональные компоненты. На выходе — большое число задач, решаемых работой одного прибора.
В России качество многих сетей на сегодняшний день оставляет желать лучшего. Потому характеристика входного напряжения часто бывает величиной нестабильной. Данная проблема частично решается посредством установки дросселей на входе преобразователя. Однако, чем заявленный диапазон входного напряжения ЧРП шире, тем лучше.
— Режимы управления ЧРП.
Существуют различные способы управления ПЧ. Наиболее распространенные: программируемый логический контроллер, компьютер, встроенная панель или выносной пульт, а также напрямую через клеммы управления.
Преобразователи частоты могут работать в скалярном и векторном режимах.Скалярный режим более простой, но при этом имеет свое преимущество: возможность управления более мощными электродвигателями при сохранении тех же силовых элементов в цепи. Применяется чаще всего при работе с насосами, вентиляторами и конвейерами. Векторный режим в отличие от скалярного обеспечивает управление магнитным потоком ротора. При выборе такого управления, возможно работать с двигателем как в обычном режиме, так и в режимах с повышенной точностью задания скорости или момента на валу.
— Диапазон регулирования частоты. Нижний предел указывает на диапазон регулирования скорости электродвигателя. Верхний предел является значимой величиной при работе с двигателями высокой номинальной частоты до 800 Гц.
Это основные параметры, на которые необходимо обращать внимание при выборе ЧРП. Разумеется, здесь представлены не все характеристики ПЧ. В любом случае, если нет уверенности в правильности сделанного выбора, лучше обратиться к специалистам. Квалифицированные специалисты Корпорации Триол всегда рады Вашему звонку или письму.
Выбор устройства плавного пуска
Принцип работы УПП основан на ограничении напряжения сети на нагрузке при помощи симисторов или тиристоров, включенных встречно-параллельно. Исходя их этого, регулируются ток и напряжение на двигателе. УПП предназначается для разгона и останова асинхронного двигателя, имеющего высокий пусковой момент. При выборе УПП необходимо остановиться на следующих свойствах.
После запуска двигателя с нагрузкой устройство желательно вывести из силовой цепи по двум причинам:
1. УПП необходимо подготовить к последующей работе, соответственно прибору нужно дать остыть после пуска;
2. Минимизируются потери из-за падения напряжения на симисторах. Этого можно достичь, соединяя пофазно вход и выход УПП шунтирующим контактором. Однако тепловые потери на силовых ключах намного меньше потерь на УПП в режиме пуска даже при длительном протекании силового тока. Поэтому некоторые УПП производятся и без шунтирующего контактора.
По элементной базе разделяют на аналоговые и цифровые УПП.
По числу ключей в фазах УПП делятся на неполнофазные (имеющие ключи в 1…2 фазах) и полнофазные (имеющие ключи во всех фазах). Полнофазные УПП обеспечивают симметричное распределение токов по фазам.
— Контроль величины тока.
Чаще всего УПП, не имеющие функции контроля тока, повышают за определенное время напряжение на двигателе от начального до номинального значения. Если же стоит задача ограничения тока, без данной функции не обойтись. В случаях, когда наблюдается ограниченная мощность сети, существует вероятность аварии из-за превышения предельно допустимого тока. УПП, имеющие данную функцию, способны обеспечить плавное нарастание тока в начале процесса пуска.
При подаче на электродвигатель постоянного тока происходит его интенсивное торможение. Функция УПП подачи тока на обмотку чаще всего применяется в системах, которые могут двигаться сами собой при отсутствии тормоза, — подъемники, фуникулеры.
УПП имеет ряд защит двигателя и механизма. В этот комплекс входят: защита от перекоса фаз, изменения чередования фаз, перегрева радиаторов УПП, защита от перегрузки и неисправностей силовой цепи, слишком маленького тока, от снижения частоты. Но стоит оберегать прибор от короткого замыкания в цепи нагрузки, в противном случае УПП может выйти из строя. Однако при правильном монтаже короткое замыкание — процесс не мгновенный, и прибор, скорее всего, просто отключится при снижении сопротивления нагрузки. Но, прежде чем снова запускать его в работу, необходимо устранить причину, приведшую к короткому замыканию.
На сегодняшний день различные отрасли российской промышленности применяют электропривод переменного тока для решения своих задач: водоснабжение, энергетика, атомная, оборонная промышленности, нефтегазовая отрасль, автоматизированное производство, крановое и лифтовое производство, вентиляция, кондиционирование. Помимо перечисленных характеристик, у преобразователя частоты и устройства плавного пуска, также важны и другие параметры: номинальные мощность и ток двигателя, напряжение питания, число пусков в час, длительность пуска/останова, пусковой ток.
Преобразователи частоты и устройства плавного пуска с фирменным логотипом «Триол» работают и на северных заснеженных просторах, и в Волгоградских степях, и в Сибири, и на жарком черноморском побережье. Перечислить все машины и механизмы, в приводах которых установлено оборудование «Триол», представляется вообще весьма затруднительным. Вот лишь небольшая часть из всего многообразия:
мельницы, дробилки, грануляторы, экструдеры, массажеры, волчки, куттеры, гомогенизаторы, жом-прессы, этикетировочные аппараты, укупорочные машины и много чего еще специфического. Сюда же следует добавить и привычные слуху насосы, вентиляторы, транспортеры, конвейеры, технологические линии.
В любой точке России Корпорация «Триол» предоставляет качественное сервисное обслуживание и практические консультации по вопросам внедрения и использования продукции. Услуги сервисной поддержки представлены 9 сервисными центрами, расположенными в разных регионах страны для обеспечения максимальной логистики и оперативного реагирования на возможные проблемы, возникшие у наших клиентов.
Источник: Андрей Степанов, Корпорация «Триол»
Как сделать плавный пуск для болгарки своими руками
Регулятор оборотов для болгарки своими руками: особенности применения, принципиальная схема, монтаж внутри корпуса. Что такое плавный пуск и как его подключить. Временные диаграммы регулятора оборотов и плавного пуска.
Практически у всех моделей болгарок нижнего ценового диапазона отсутствуют такие полезные опции, как регулировка скорости вращения шпинделя и плавный пуск. При наличии желания и некоторых навыков регулятор оборотов для болгарки можно изготовить своими руками, хотя гораздо проще приобрести готовый электронный блок за несколько сотен рублей. Регулировка частоты вращения расширяет возможности УШМ и позволяет выполнять с помощью нее обработку мягких материалов на пониженных скоростях резания. Помимо регулятора числа оборотов для УШМ очень полезной функцией является плавный пуск, который сглаживает резкое нарастание тока в обмотках электродвигателя в момент подачи на него напряжения. Этим предотвращается скачкообразное увеличение крутящего момента и «проседание» питающей сети. Кроме того, плавный пуск снижает ударные нагрузки на двигатель и редуктор болгарки, что защищает их от преждевременного износа.
Для чего нужно регулировать обороты на УШМ
Любая болгарка конструктивно «заточена» на работу только с отрезным или зачистным кругом определенного диаметра. Всего существует шесть самых распространенных диаметров в интервале от 115 до 300 мм, которым соответствует шесть групп скоростей вращений шпинделя на холостом ходу. К примеру, болгарки с кругами Ø125 мм имеют частоту вращения порядка 11÷12 тыс. об/мин, а с кругами Ø150 мм — 9÷10 тыс. об/мин. Такие значения числа оборотов шпинделя обусловлены тем, что отрезные диски предназначены для высокопроизводительной обработки твердых материалов (металл, камень, керамика) на скоростях резания до 80 м/сек.
Однако при резке и в особенности шлифовке мягких и вязких материалов требуются совсем другие параметры резания и, соответственно, применение инструмента с регулятором скорости. Причем это касается не только древесины и пластмасс, но также сталей, сплавов титана и алюминия. Например, обработка пластиков и мягких сортов дерева происходит на скоростях резания от 8 до 12 м/сек, шлифовка сплавов титана и нержавейки — в пределах 15÷20 м/сек, и даже обычную сталь шлифуют не более чем при 30 м/сек. Поэтому скорость вращения шлифовальных насадок у болгарок должна быть меньше паспортной в несколько раз. При этом необходимо отметить, что в основной массе регуляторы оборотов УШМ по своей сути являются регуляторами мощности, подаваемой на электродвигатель болгарки. То есть снижение числа оборотов достигается уменьшением мощности источника на величину до 15 % от номинальной. Но для шлифовки и резки мягких материалов это не имеет большого значения, т. к. в этом случае изначально требуется небольшая мощность.
Принципиальная схема регулятора оборотов
Что такое плавный пуск
Электронная схема, обеспечивающая плавный пуск болгарки, построена на том же принципе, что схема регулятора оборотов. Здесь также используется симистор, ограничивающий подачу мощности на электродвигатель. Но в отличие от регулятора скорости вращения управляющие импульсы на симистор формируются не ручным заданием сопротивления в RC-цепочке, а электронной схемой, формирующей последовательность импульсов с уменьшающейся длительностью задержки. Ниже на диаграмме показано, как сокращается время сдвига импульса и нарастает мощность, подаваемая на двигатель болгарки.
Поскольку плавный пуск и регулятор оборотов работают на одной схемотехнике, выпускаются электронные блоки, сочетающие в себе функции обоих этих устройств.
Способы подключения регулятора внутрь корпуса болгарки
В хватовой части (задней ручке) болгарки для установки регулятора с такими габаритами места более чем достаточно. У маломощных УШМ свободное место находится обычно ближе к его концу, а у более мощных — между ручкой и двигателем или в самой ручке (см. фото ниже). Особых навыков для установки такого регулятора не требуется, т. к. его просто нужно включить в разрыв цепи питания электродвигателя болгарки.
В видеоролике ниже показана реанимация старой болгарки с оснащением ее регулятором скорости вращения. Интересно кнопочное управление числом оборотов с запоминанием значения после выключения напряжения питания.
Подключение плавного пуска
Блок плавного пуска можно приобрести в торговых сетях и самостоятельно смонтировать внутри корпуса любой УШМ. В видеоролике ниже показана его установка на новую мощную болгарку, приобретенную автором для зачистных работ. Это видео также интересно тем, что его автор с помощью стрелочного прибора демонстрирует величину скачка тока при включении болгарки сначала без плавного пуска, а затем уже с этим устройством.
Самым совершенным устройством управления болгаркой является система поддержания оборотов под нагрузкой, которая также выполняет функции регулятора скорости вращения и обеспечивает плавный пуск. В Интернете можно найти схему изготовления такого устройства на микросхеме U2010B, но она достаточно сложна даже для тех, кто обладает начальными навыками радиолюбителя. А можно ли приобрести готовый блок поддержания оборотов и сколько он стоит? Если кто-нибудь может ответить на этот вопрос, пожалуйста, поделитесь информацией в комментариях.