10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое рабочие характеристики двигателя постоянного тока

Машины постоянного тока. Электродвигатели и генераторы.

Конструкция


Конструктивно электродвигатель постоянного тока состоит из ротора (якоря), индуктора, коллектора и щеток. Давайте рассмотрим, что представляет собой каждый элемент системы:

  1. Ротор состоит из множества катушек, что покрыты проводящей ток обмоткой. Некоторые электродвигатели постоянного тока 12 вольт содержат до 10 и более катушек.
  2. Индуктор – неподвижная часть агрегата. Состоит из магнитных полюсов и станины.
  3. Коллектор – функциональный элемент двигателя в виде цилиндра, размещенного на валу. Содержит изоляцию в виде медных пластин, а также выступы, которые находятся в скользящем контакте с щетками двигателя.
  4. Щетки – неподвижно закрепленные контакты. Предназначены для подводки электрического тока к ротору. Чаще всего электродвигатель постоянного тока оснащается графитовыми и медно-графитовыми щетками. Вращение вала приводит к замыканию и размыканию контактов между щетками и ротором, что вызывает искрение.

Электродвигатели постоянного тока

Категория: постоянный ток

Заводы производители электродвигателей постоянного тока: Псковский электромашиностроительный завод, Татэлектромаш, Кросна-Мотор, Карпинский электромашиностроительный завод, Динамо Энерго, Электросила (Силовые машины), Сибэлектропривод, Белгородский электротехнический завод, Островский завод электрических машин

Серии двигателей:

  • для большегрузных самосвалов – ДПТВ, ЭК, ДК, ЭДП
  • для железнодорожного транспорта – П, ЭК, ДК, ДТК, ЭДУ, 4ПНЖ, ЭДТ, ЭДК, ДПТ
  • для экскаваторов – ДЭ, Д, ЭК, ДЭВ, ДЭ (В), ДПЭ, ДМПЭ, ДПВ, КРЭ
  • для городского электротранспорта – ДПУР, КР
  • для кранов – Д, МПЭ
  • для судов – ДПМ, ТДП
  • для буровых – Д808Б, КР, ДК, МПБ, 4П, ДПБ
  • для шахт – ДПТ, ДАТВ и ДАКВ
  • общепромышленное/общее применение – 4П, КР, Д808К

Применение

Двигатели постоянного тока (ДПТ) приводят во вращение механизмы, требующие больших пусковых вращающих, моментов и широкого регулирования частоты вращения. Данные электродвигатели широко применяются в городском и железнодорожном транспорте, в судостроении, при работе кранов и в других областях. При выборе электродвигателя неоходима консультация с заводом производителем.

Цена на двигатели постоянного тока зависит от типа двигателя и его комплектации:

  • Бренда производителя
  • Параметров мощности
  • Линейных размеров двигателя
  • Наличия защиты от пыли и влаги
  • Способа монтажа

Преимущества двигателей постоянного тока:

  • Простота конструкции и ремонтопригодность
  • Надежность и безопасность оборудования может быть повышена за счет установки дополнительных датчиков, уплотнителей и др.
  • Возможность и простота регулировки скорости вращения
  • Компактные габариты, применение в ограниченном пространстве
  • Широкое распространение и применение в различных отраслях

Устройство двигателя постоянного тока

Конструктивно ДПТ устроен по принципу взаимодействия магнитных полей. Коллектроный электродвигатель постоянного тока состоит из частей:

  • Статора — неподвижная часть двигателя. Включают постоянные магниты повернутых разными полюсами к обмоткам.
  • Ротора – вращающееся часть. Расположен на валу и включает обмотки с сердечниками.
  • Коллектора – двух полукруглых, изолированных пластин, расположенных на валу двигателя.
  • Щёток — передают электроток через коллектор до обмоток возбуждения.

Рисунок 1 — Устройство коллекторного двигателя постоянного тока. 1- якорь, 2 — сердечник полюса, 3 — обмотка полюса, 4 — вентилятор, 5 — статор, 6 — щётки, 7 — коллектор

Технические характеристики двигателей ДПЭ, ДПВ постоянного тока для экскаваторов

Габариты для двигателей ДПВ постоянного тока для экскаваторов

Работа электродвигателя постоянного тока


Механизмы данной категории содержат специальную обмотку возбуждения на индукторной части, куда поступает постоянный ток, что в последующем преобразуется в магнитное поле.
Обмотка ротора поддается воздействию потока электроэнергии. Со стороны магнитного поля на данный конструктивный элемент оказывает влияние сила Ампера. В результате образуется крутящий момент, что проворачивает роторную часть на 90о. Продолжается вращение рабочих валов двигателя за счет образования эффекта коммутации на щеточно-коллекторном узле.

При поступлении электрического тока на ротор, который находится под воздействием магнитного поля индуктора, электродвигатели постоянного тока (12 вольт) создают момент силы, что приводит к выработке энергии в процессе вращения валов. Механическая энергия передается от ротора к прочим элементам системы посредством ременной передачи.

В чём плюсы электродвигателей YALU

Основная функция электродвигателей постоянного тока — преобразование электрической энергии постоянного тока в механическое непрерывное угловое вращение. В отличие от двигателей переменного тока они обладают возможностью регулировки частоты оборотов в большом диапазоне.

В основе работы ДПТ лежит явление электромагнитной индукции, когда на проводник в магнитном поле действует сила Ампера, вызывающая возникновение крутящего момента, который определяется током, проходящим через обмотки двигателя. Этот момент и используют в практических целях для вращения насосов, вентиляторов, колёс, компрессоров и пр.

Основными деталями ДПТ выступают статор (неподвижная часть) и ротор (вращающаяся часть). Скорость вращения определяется приложенным напряжением постоянного тока. Она может варьироваться от нескольких до тысячи оборотов в минуту. Это расширяет возможности применения ДПТ, которые можно использовать в робототехнике, электронике, автомобилестроении.


Набор для «электрификации» велотранспорта

Электродвигатели YALU обладают всеми преимуществами, которые свойственны ДПТ.

К плюсам агрегатов относятся:

  • компактные размеры, особенно у двигателей на постоянных магнитах;
  • быстрый запуск за счёт большой величины пускового момента;
  • простая эксплуатация, связанная с практически линейными регулировочными и механическими характеристиками;
  • плавная регулировка скорости вращения вала;
  • возможность применения не только в качестве двигателя, но и как генератора тока.

Важной характеристикой ДПТ выступает мощность, от которой зависит КПД агрегата. Для слабых двигателей КПД составляет около 40 %, а для более мощных (1 МВт) может достигать 96 %.


В настоящее время выделяют несколько категорий электродвигателей постоянного тока:

  • С независимым возбуждением – питание обмотки происходит от независимого источника энергии.
  • С последовательным возбуждением – обмотка якоря включена последовательно с обмоткой возбуждения.
  • С параллельным возбуждением – обмотка ротора включена в электрическую цепь параллельно источнику питания.
  • Со смешанным возбуждением – двигатель содержит несколько обмоток: последовательную и параллельную.

Широкие возможности с электродвигателями постоянного тока

Ввиду разнообразия ассортимента сегодня возможны стабильные поставки электродвигателей постоянного тока YALU для самодвижущейся техники, электротранспорта и других видов техники и промышленного оборудования. В зависимости от задач можно подобрать один мотор или все комплектующие, необходимые для проекта.

Среди ДПТ представлены агрегаты, рассчитанные на напряжение от 12 до 48 В и силу тока до 39 А. Если вам необходима консультация по поводу выбора, обратитесь к представителям «ВКС» через онлайн-форму или свяжитесь по телефону.

Управление электродвигателем постоянного тока

Пуск двигателя осуществляется за счет работы специальных реостатов, которые создают активное сопротивление, включаемое в цепь ротора. Для обеспечения плавного запуска механизма реостат обладает ступенчатой структурой.

Для старта реостата задействуется все его сопротивление. По мере роста скорости вращения возникает противодействие, что накладывает ограничение на рост силы пусковых токов. Постепенно ступень за ступенью увеличивается подводимое к ротору напряжение.

Электродвигатель постоянного тока позволяет регулировать скорость вращения рабочих валов, что осуществляется следующим образом:

  1. Показатель скорости ниже номинальной корректируется изменением напряжения на роторе агрегата. При этом крутящий момент остается стабильным.
  2. Темп работы выше номинального регулируется током, который возникает на обмотке возбуждения. Значение крутящего момента снижается при поддержании постоянной мощности.
  3. Управление роторным элементом осуществляется при помощи специализированных тиристорных преобразователей, которые представляют собой приводы постоянного тока.

Сферы применения электродвигателей постоянного тока

Электродвигатели постоянного тока — наиболее часто используемые приводы для создания непрерывного движения с регулируемой скоростью вращения. Они могут приводить в движение транспортные средства: от игрушечных автомобилей-аттракционов с аккумулятором 12 В до электричек и троллейбусов, где точность регулировки оборотов наглядно демонстрируется плавным разгоном техники. Агрегаты на постоянных магнитах имеют особенно большую плотность мощности, поэтому часто используются в оборонительной отрасли.

Электрический транспорт — одна из самых распространённых сфер применения ДПТ. На них основана работа:

  • метро,
  • трамваев,
  • троллейбусов,
  • электровозов,
  • пригородных электрических дорог.
Читать еще:  Форд мондео 1996 троит двигатель

Другую сферу применения ДПТ составляют подъёмные механизмы, включая электрические подъёмные краны. Ввиду отсутствия жёстких ограничений по размерам электродвигатели часто остаются незамеченными. Их используют в автомобилестроении: на грузовом транспорте устанавливаются агрегаты с рабочим напряжением от 24 В, а на легковом — 12 В. Здесь ДПТ работают от генератора или АКБ и отвечают за разные функции:

  • поднятие-опускание стёкол;
  • поддержание в салоне заданной температуры;
  • позиционирование сидений;
  • управление зеркалами и пр.


Использование электродвигателя на постоянном токе для автоматизированной очистки стёкол
Для применения ДПТ в качестве генератора тока необходимо поменять полярность питания постоянного тока, подаваемого на соединения агрегата. Т. е., нужно изменить направление тока в якоре или обмотке возбуждения. В результате вал будет вращаться в противоположном направлении. Самым простым и недорогим способом управления вращением вала остаются переключатели.

При использовании ДПТ учитывается одна из важнейших характеристик — способ подключения обмотки возбуждения:

  • независимый,
  • параллельный,
  • последовательный,
  • смешанный.

В ДПТ с последовательной схемой возбуждения при необходимости можно уменьшить скорость вращения в 2 раза. За это отвечает переменный резистор, который при необходимости включают в цепь возбуждающей обмотки реостата. В двигателях с параллельной схемой для уменьшения оборотов в 2 раз тоже применяют реостат, а для повышения в 4 раза подключают сопротивление.


В двигателях с параллельной схемой для уменьшения оборотов в 2 раз тоже применяют реостат, а для повышения в 4 раза подключают сопротивление

Преимущества и недостатки


Сравнивая электродвигатели постоянного тока с агрегатами, функционирующими на переменном токе, стоит отметить их повышенную производительность и увеличенный коэффициент полезного действия.
Оборудование данной категории отлично справляется с отрицательным воздействием факторов окружающей среды. Способствует этому наличие полностью закрытого корпуса. Конструкция электродвигателей постоянного тока предусматривает наличие уплотнений, что исключают проникновение влаги в систему.

Защита в виде надежных изоляционных материалов дает возможность задействовать максимальный ресурс агрегатов. Допускается применение подобного оборудования при температурных условиях в пределах от -50 до +50 оС и относительной влажности воздуха порядка 98 %. Запуск механизма возможен после периода длительного простоя.

Среди недостатков электрических двигателей постоянного тока на первое место выходит достаточно быстрый износ щеточных узлов, что требует соответствующих расходов на обслуживание. Сюда же относится крайне ограниченный срок службы коллектора.

Анализ основных характеристик двигателя постоянного тока

Введение

двигатель батарея химический аккумуляторный

История развития военного дела учит, что вооружение и военная техника развиваются под воздействием трех факторов:

потребностей вооруженных сил;

экономических возможностей страны.

Сокращение ассигнований на оборону сегодня серьезно обостряет проблему финансирования разработок ВВТ. В этой связи заслуживает внимания опыт работы командования и Генерального штаба Красной Армии в 20-е годы. Несмотря на существенное сокращение ВС и расходов на их финансирование, эти органы шли в ногу с передовыми достижениями военно-технической мысли и оперативного искусства, готовя армию к тому времени, когда советская промышленность сможет оснастить ее современным вооружением. Правильность подобной политики подтвердил опыт Великой Отечественной войны, когда советская военно-техническая мысль обеспечила превосходство отечественной военной техники на поле боя.

Сохранение уровня боевой готовности автомобильной и специальной техники при любых условиях хранения является острым и злободневным вопросом. Проблема запуска двигателя шасси в условиях низких температур в значительной мере влияет на способность автомобильной и специальной техники выйти из пунктов хранения в назначенное время.

Для системы электроснабжения шасси режим стартерного запуска двигателя является наиболее сложным и энергоемким. При пуске двигателя шасси необходимо сообщить коленчатому валу начальную частоту вращения, после чего двигатель начнет работать самостоятельно. Опыт низкотемпературной эксплуатации военной техники говорит о необходимости использования внешних устройств, облегчающих стартерный запуск двигателя. Создание таких пусковых устройств позволит решить немало проблем эксплуатации автомобильной техники — повысить надежность заводки двигателей, срок службы аккумуляторных батарей.

Дипломная работа посвящена анализу процессов, происходящих в системе запуска двигателя (стартер — аккумуляторная батарея), исследованию путей повышения энергетических показателей системы пуска. На основе проведенного анализа разработаны практические рекомендации по облегчению запуска двигателя в условиях низких температур.

1.
Анализ технико-эксплуатационных характеристик стартеров штатной техники

Заключение

На основе анализа технико-эксплуатационных характеристик системы запуска двигателя шасси и возможных конструктивных вариантов устройств были разработаны рекомендации по облегчению работы аккумуляторов при стартерном запуске в условиях низких температур.

В работе предложена принципиальная электрическая схема пускового устройства, которое облегчает стартерный запуск двигателя шасси ГАЗ-66 с бортовой сетью 12 В при неблагоприятных условиях в холодное время года или при слабо заряженной аккумуляторной батарее 6СТ-68ЭМ.

Разработанное пусковое устройство выдает постоянный ток 50А, соответствующий 16,7% разрядной емкости аккумуляторной батареи 6СТ-68ЭМ при напряжении 12В. Мощность на выходе канала «ПУСК» равняется 600 Вт.

Указанные параметры обеспечивают гарантированный запуск двигателя автомобиля ГАЗ-66 в любых климатических условиях и при любом состоянии аккумуляторной батареи.

Расчет показателей надежности показал, что среднее время безотказной работы прибора составляет 4000 часов. Масса спроектированного устройства при габаритах 180 130 260 мм равна 6, 407 кг.

Техническое обслуживание проводится при подготовке к работе, при этом легкий доступ к элементам очень удобен для проведения ремонта в случае обнаружения неисправностей.

Список использованной литературы

1. Положение о научной работе в Вооруженных Силах РФ.

2. Руководство по организации работы высших военно-учебных заведений Министерства обороны РФ.

3. ГОСТ 7.32-91. Отчет о научно-иследовательской работе. Структура и правила оформления. — М.: Изд-во стандартов, 1991.

4. ГОСТ 7.1-84. Библиографическое описание документа. Общие требования и правила составления. — М.: Изд-во стандартов, 1984.

5. ГОСТ 7.12-93. Библиографическая запись. Сокращение слов на русском языке. Общие требования и правила. — М.: Изд-во стандартов, 1995.

6. ГОСТ 29.115-88. Оригиналы авторские и текстовые издательские стандарты по издательскому делу. Сост. А.А. Джиго, С.Ю. Калинин. — М.: Юрист.1998.

7. Мощные полупроводниковые приборы. Диоды. Под ред. Голомедова А.В. — М.: Радио и связь, 1985. — 400 с.

8. Расчет устройства для заряда кислотных аккумуляторных батарей. — Саратов: СВВКИУ РВ, 1983. — 46 с.

9. Незнайко А.П., Геликман Б.Ю. Конденсаторы и резисторы. — М.: Энергия, 1974. — 110 с.

10.Мухитдинов М. Светоизлучающие диоды и их применение. — М.: Энергия, 1988. — 80 с.

11.Свинцовые стартерные аккумуляторные батареи. Руководство. — М.: Воениздат, 1983. — 183 с.

12.Резисторы. Справочник. Под ред. Четверткова И.И. — М.: Радио и связь, 1991. — 528 с.

13.Банников С.П. Электрооборудование автомобилей. Учебник. — М.: Транспорт, 1977. -290 с.

Введение

двигатель батарея химический аккумуляторный

История развития военного дела учит, что вооружение и военная техника развиваются под воздействием трех факторов:

потребностей вооруженных сил;

экономических возможностей страны.

Сокращение ассигнований на оборону сегодня серьезно обостряет проблему финансирования разработок ВВТ. В этой связи заслуживает внимания опыт работы командования и Генерального штаба Красной Армии в 20-е годы. Несмотря на существенное сокращение ВС и расходов на их финансирование, эти органы шли в ногу с передовыми достижениями военно-технической мысли и оперативного искусства, готовя армию к тому времени, когда советская промышленность сможет оснастить ее современным вооружением. Правильность подобной политики подтвердил опыт Великой Отечественной войны, когда советская военно-техническая мысль обеспечила превосходство отечественной военной техники на поле боя.

Сохранение уровня боевой готовности автомобильной и специальной техники при любых условиях хранения является острым и злободневным вопросом. Проблема запуска двигателя шасси в условиях низких температур в значительной мере влияет на способность автомобильной и специальной техники выйти из пунктов хранения в назначенное время.

Читать еще:  Вибрация при запуске двигателя ваз 2107

Для системы электроснабжения шасси режим стартерного запуска двигателя является наиболее сложным и энергоемким. При пуске двигателя шасси необходимо сообщить коленчатому валу начальную частоту вращения, после чего двигатель начнет работать самостоятельно. Опыт низкотемпературной эксплуатации военной техники говорит о необходимости использования внешних устройств, облегчающих стартерный запуск двигателя. Создание таких пусковых устройств позволит решить немало проблем эксплуатации автомобильной техники — повысить надежность заводки двигателей, срок службы аккумуляторных батарей.

Дипломная работа посвящена анализу процессов, происходящих в системе запуска двигателя (стартер — аккумуляторная батарея), исследованию путей повышения энергетических показателей системы пуска. На основе проведенного анализа разработаны практические рекомендации по облегчению запуска двигателя в условиях низких температур.

1.
Анализ технико-эксплуатационных характеристик стартеров штатной техники

Анализ основных характеристик двигателя постоянного тока

двигатель батарея химический аккумуляторный

Для пуска ходового двигателя штатной техники применяется стартер, представляющий собой электрическую машину. Стартер работает, как правило, в сложных условиях эксплуатации, имеет кратковременный или повторно-кратковременный режим работы. Стартеры, как преобразователи электрической энергии в механическую, должны обеспечивать высокую надежность электрического пуска двигателя шасси.

На шасси преимущественно применяются двигатели постоянного тока последовательного возбуждения малой мощности: от 0.6 КВт до 10 КВт, частота вращения которых относится к быстроходной. Стартер, как и другие электрические машины, рассчитывается на определенную нагрузку и условия эксплуатации. Основными номинальными электрическими данными для двигателя постоянного тока являются: номинальное напряжение Uном, В; номинальная мощность Рном, Вт, номинальная частота вращения n, об/мин; номинальный вращающий момент М, Н×м; номинальный ток Iном, А; коэффициент полезного действия h.

При работе двигателей меняются условия эксплуатации, величина нагрузки. Поэтому основные данные двигателя постоянного тока отличаются от номинальных. Свойства данных двигателей определяются рабочими и механическими и регулировочными характеристиками, представляющими зависимость одного основного параметра от другого при постоянных значениях остальных основных параметров.

Рабочие характеристики стартера представляют собой зависимость частоты вращения n, вращающего момента М, коэффициента полезного действия h от полезной мощности на валу Р2 или от тока якоря Iа при постоянных значениях напряжения на зажимах двигателя U=Uном и сопротивлениях цепи якоря Rа и возбуждения Rв, то есть:

Зависимости n=f(Ia) и М=f(Ia) получили названия соответственно скоростной и моментной рабочей характеристикой. Рабочие характеристики оценивают свойства двигателя при изменении полезной мощности на валу Р2.

Поскольку при исследовании двигателя напряжение на его зажимах поддерживается постоянным, то обычно рабочие характеристики снимаются в зависимости от тока якоря Iа.

Скоростная характеристика (рисунок 1.1) представляет собой зависимость:

где n — частота вращения якоря стартера, об/мин;=Uном — номинальное напряжение на зажимах стартера, об/мин;а — ток якоря, А;в — сопротивление цепи возбуждения, Ом.

Скоростная характеристика мягкая и напоминает собой гиперболу. При снижении нагрузки уменьшается ток якоря, что ведет к значительному росту частоты вращения. Если нагрузка отсутствует, то стартер «идет в разнос». Следовательно, работа этих двигателей, за исключением маломощных, на холостом ходу не допускается, а использование ременной передачи неприемлемо.

Моментная характеристика является зависимостью:

Вращающий электромагнитный момент определяется по формуле (1.4). Для стартера при ненасыщенной магнитной цепи магнитный поток пропорционален току якоря (по формуле 1.5).

где М — вращающий электромагнитный момент, Н×м;

См — постоянная величина, зависящая от конструктивных данных двигателя;

Ф — магнитный поток, Вб.

М = См × Кф × Iа , (1.5)

где Кф — коэффициент пропорциональности.

Таким образом, вращающий момент пропорционален квадрату тока якоря и моментная характеристика представляет собой параболу. Пусковой момент двигателя последовательного возбуждения намного выше, чем у других типов двигателей. Это одно из преимуществ его перед другими двигателями.

Основные параметры, характеризующие моментную характеристику:

М — вращающий электромагнитный момент, Н×м:

Мп — пусковой момент стартера, Н×м;а п — пусковой ток стартера, А;а ном — номинальный ток стартера, А.

Механическая характеристика используется для подбора электродвигателя в качестве привода исполнительного механизма, и в общем виде представляет зависимость:

n = f(М) при U= Uном= const, Iа = Iв ном = сonst, R= const, (1.6)

где n — частота вращения якоря, об/мин;

М — вращающий момент, Н×м;ном — номинальное напряжение на зажимах стартера, В,в ном — номинальный ток возбуждения, А,- сопротивление цепей якоря и возбуждения, Ом.

Механическая характеристика стартера имеет вид гиперболы.

В двигателях постоянного тока механическая характеристика является мягкой по сравнению с другими типами двигателей.

К стартерам штатной техники, на основании всех вышеперечисленных характеристик, представляются следующие требования: простота конструкции, малые габариты и масса, малая стоимость, большая долговечность и надежность в эксплуатации, большая мощность, большой момент в режиме полного торможения.

На примере стартера СТ 130-Б автомобиля ГАЗ-66 в таблице 1 представлены технико-эксплуатационные характеристики, регламентирующие его работу.

Таблица 1 Технико-эксплуатационные характеристики стартера СТ 130-Б

№ ппХарактеристикиВеличины
1.номинальное напряжение, В12
2.число зубьев шестерни привода стартера9
3.номинальная мощность, л.с. (с батареей емкостью 68 А×ч)1,4
4.режим холостого хода при напряжении 12В: потребляемый ток, А; Число оборотов вала в минуту.не более 80 не менее 3500
5.режим полного торможения при питании стартера от 12-вольтовой аккумуляторной батареи емкостью 68 А×ч: потребляемый ток, А; крутящий момент, кг×м.не более 650 не менее 3
6.щетки4 медно-графитовые марки МГС-4 размером 8,8´19,2´14 мм
7.тип тягового релеРС 130

Стартер СТ130-Б является четырехполюсным, четырехщеточным, с сериесным (последовательным) возбуждением.

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

01.11.2012

Классификация электродвигателей постоянного тока и их механические характеристики

По способу создания магнитного потока различают электродвигатели с постоянными магнитами и электромагнитами.

Электродвигатели с постоянными магнитами в силу относительно слабого магнитного потока изготовляют только небольшой мощности. Их используют в системах управления в качестве серводвигателей.

Для привода рабочих машин применяются двигатели с электромагнитами, которые по способу включения обмоток, называемых обмотками возбуждения, подразделяются на двигатели с независимым (рис. 2.1, а), параллельным (рис. 2.1, б), последовательным (рис. 2.1, в) и смешанным (рис. 2.1, г) возбуждением.

Различие между двигателями с независимым и параллельным возбуждением заключается в том, что у первого обмотка возбуждения LM1 и якорь М питаются от различных источников постоянного тока, а у второго LM2 и М — от одного. Напряжение возбуждения у двигателей с независимым возбуждением может быть равным напряжению приложенному к якорю, и отличным от него. У крупных двигателей в большинстве случаев напряжение возбуждения меньше напряжения, приложенного к якорю.

Читать еще:  Что такое штаны в двигателе ваз 2115

У двигателя с последовательным возбуждением обмотка возбуждения LM3 включена последовательно с якорем М. Напряжение возбуждения меньше напряжения, приложенного к якорю.

Двигатели с параллельным и последовательным возбуждением можно рассматривать как частный случай двигателя со смешанным возбуждением, имеющего 2 обмотки возбуждения LM2 и LM3. В цепь якоря включают пусковой реостат R1, а в цепь возбуждения регулирующий—R2.

Механической характеристикой электродвигателя называется зависимость частоты вращения от вращающего момента на его валу при неизменной схеме включения и постоянных параметрах питающей сети и элементов цепей якоря и возбуждения.

Характеристика называется естественной, если напряжение сети равно нормальному, а сопротивления реостатов R1 и R2 равны нулю (R1 = 0; R2 = 0), в противном случае характеристика называется искусственной.

Аналитическое выражение механической характеристики двигателя может быть получено из соотношений, приведенных в курсе общей электротехники:

и, подставив его в формулу для частоты вращения якоря, получим уравнение механической характеристики двигателя:

При вращающем моменте М = 0

где b — угловой коэффициент характеристики;

Значение углового коэффициента b можно получить другим путем.

При вращающем моменте заторможенного двигателя М = Мп (М п — пусковой момент двигателя) частота вращения n = 0. Тогда 0 = nx — bМп и угловой коэффициент b = nx/Мп.

В этом случае механическая характеристика будет

У двигателя с последовательным возбуждением обмотка возбуждения включена последовательно с обмоткой якоря, поэтому его магнитный поток является функцией тока якоря и механическая характеристика имеет вид гиперболы (кривая 2). При идеальном холостом ходе частота вращения неограниченно увеличивается. У реальных двигателей при номинальном режиме магнитная система близка к насыщению. Это вносит определенные искажения в форму механической характеристики, которая при перегрузках двигателя приближается к прямой линии,поскольку при насыщении магнитный поток становится практически постоянным и не зависит от момента.

Механическая характеристика двигателя со смешанным возбуждением (кривая 3) занимает промежуточное положение между механическими характеристиками двигателей с параллельным и последовательным возбуждением. У него, как и у двигателей с параллельным и независимым возбуждением, частота вращения идеального холостого хода имеет определенное значение

где Ф1 — магнитный поток, создаваемый параллельной обмоткой возбуждения.

Его механическая характеристика криволинейна вследствие изменения магнитного потока, вызванного влиянием последовательной обмотки возбуждения.

Анализируя механические характеристики электродвигателей постоянного тока с различными способами включения обмоток возбуждения, можно прийти к выводу, что с изменением вращающего момента на валу электродвигателя его частота вращения изменяется незначительно у двигателя с параллельным возбуждением и в большей степени у двигателя с последовательным возбуждением.

Мощность, развиваемая электродвигателем,

где w — угловая скорость двигателя.

Следовательно, мощность, потребляемая из сети, у двигателя с последовательным возбуждением изменяется меньше.

Поэтому механическую характеристику двигателя с параллельным возбуждением называют жесткой, а характеристику двигателя с последовательным возбуждением — мягкой.

Характеристика двигателя со смешанным возбуждением обладает меньшей жесткостью, чем характеристика двигателя с параллельным возбуждением, но большей, чем характеристика двигателя с последовательным возбуждением.

Онлайн помощник домашнего мастера

Характеристики электродвигателей: основные параметры и расшифровка маркировки современных электродвигателей

  • Электродвигатели

Основной составной частью любого производственного механизма является электродвигатель. Правильный подбор этого устройства обеспечивает надежность и экономичность работы всей системы в целом. Простота управления электроприводом, а также его стоимость, зависят от технических характеристик электродвигателей.

Как правило, электропривод отвечает за значение таких характеристик движения как скорость, ускорение, пусковой и тормозной момент и другие.

При оценке электродвигателя учитываются следующие параметры:

  • Мощность;
  • КПД;
  • Вращающий момент;
  • Частота;
  • Линейная скорость;
  • Угловая скорость.

Значения этих параметров влияют на особенности проектирования и архитектуры промышленного оборудования.

Рассмотрим подробнее основные характеристики двигателей.

Краткое содержимое статьи:

Номинальная механическая мощность

Этот параметр электродвигателя записывается в паспортную табличку и измеряется в киловаттах. На фото характеристик электродвигателей показан внешний вид паспортной таблички (шильдика).

Номинальная механическая мощность относится к валу электродвигателя, и это понятие отличается от электрической мощности, рассчитываемой в зависимости от количества потребляемой электроэнергии.

Например, если на шильдике указана мощность 2200 ватт, это означает, что при оптимальной скорости работы устройство в секунду производит механическую работу, равную 2200 джоулей.

Номинальная активная электрическая мощность

Следующая характеристика двигателей переменного тока рассчитывается с помощью значения КПД, которое также указано на паспортной табличке. Чем больше КПД, тем больше мощности из сети переводится в механическую мощность движения вала. Допустим, если КПД равен 80%, то номинальная активная мощность равна 2200/0.8 = 2750 Вт.

Номинальная полная электрическая мощность

Для ее нахождения используется косинус фи, который прописан на шильдике электродвигателя. Полная электрическая мощность равна отношению активной мощности и косинуса фи. При косинусе фи равном 0,87 полная мощность равна 2750/0,87=3160 Вт.

Номинальная реактивная электрическая мощность

Мощность, которая возвращается в электрическую сеть, называется реактивная мощность. Она рассчитывается как квадратный корень из разности квадратов полной и активной электрической мощностей. В нашем примере она равна 2750 ВАР (вольт-ампер реактивных).

Механические характеристики электродвигателей также важны при выборе и покупке устройства. Рассмотрим правила, по которым они рассчитываются.

Частота вращения ротора

Для вычисления этого параметра электродвигателей нам понадобится частота переменного тока и количество оборотов в минуту при оптимальной нагрузке. Пусть в паспортной табличке указаны следующие данные: частота тока составляет 50 Гц, а количество оборотов – 2800.

Переменный ток создает магнитное поле, которое имеет частоту 50*60=3000 оборотов в секунду. Известно, что электродвигатель асинхронный, а это означает, что наблюдается отставание от номинальной частоты вращения на некоторую величину. Назовем ее скольжением и обозначим за s.

Величина скольжения определяется следующей формулой: s = ((3000 – 2800) / 3000) * 100% = 6,7%.

Угловая скорость

Следующей немаловажной характеристикой асинхронного электродвигателя является угловая скорость. Для того, чтобы ее вычислить, в первую очередь нужно перевести частоту вращения ротора в другие единицы измерения. Сначала посчитаем количество оборотов в секунду: 2800 / 60 = 46,7.

Далее нужно умножить полученное число на 2 Пи: 46,7 * 2 * 3,14 = 293,276 радиан в секунду. Полученная величина характеризует угловую скорость электродвигателя. Иногда, для удобства вычислений, угловую скорость переводят в градусы. Получаем: 46,7 * 360 = 16812 градусов в секунду.

Линейная скорость

Этот механический параметр характеризует оборудование, в устройстве которого используется данный асинхронный двигатель. Допустим, что к валу двигателя присоединен диск определенного радиуса R. В этом случае величина линейной скорости может быть определена по следующей формуле:

  • Линейная скорость = Угловая скорость * R.
  • Рассчитаем линейную скорость для нашего примера. Возьмем R = 0.3 м.
  • Линейная скорость = 293,276 * 0,3 = 87,9828 м/c.

Номинальный вращающий момент

Такой параметр, как вращающий момент электродвигателя, показывает, каким образом механическая мощность устройства зависит от угловой скорости. Эту зависимость иллюстрирует простое соотношение: вращающий момент – это отношение мощности к угловой скорости.

Существует также соотношение между вращающим моментом и радиусом шкива: Момент = Сила * Радиус.

Это равенство говорит о том, что меньшем радиусе вращения сила увеличивается, и наоборот. То есть при проектировании устройства с асинхронным двигателем следует учесть тот факт, что действующая сила увеличивается с приближением к оси вала. В некоторых случаях эта особенность может сыграть важную роль.

Таким образом, для расчета всех необходимых электрических и механических характеристик электродвигателя достаточно знать данные, которые указаны на паспортной табличке или, другими словами, шильдике. Простые формулы помогут правильно настроить работу электрооборудования и оптимально использовать производственные ресурсы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector