5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое редуктор в судовом двигателе

Виды мотор-редукторов в электроприводе

В электроприводах различного назначения, применительно ко многим сферам современной промышленности, широкое распространение получили моторы-редукторы. Это специальные приводные узлы, включающие в себя электродвигатель и редуктор. Данное решение оказывается весьма полезным и эффективным в системах автоматизации, управления и регулирования, а также в медицинской технике и во многих других специализированных областях.

Практически мотор-редукторы можно встретить сегодня на промышленном оборудовании самого разнообразного назначения. Больше других в промышленности распространены цилиндрические и планетарные редукторы, просто в силу удобного взаимного расположения выходного вала редуктора и электродвигателя.

Мотор-редуктор в обычном виде — это моноблочная конструкция, представляющая собой комбинацию редуктора и электродвигателя. В данном случае электродвигатель и редуктор заключены в корпус вместе с прочими деталями единого механизма.

Корпус может быть чугунным, металлическим либо изготовленным из более легкого сплава, в зависимости от назначения и области применения привода. Благодаря компактному исполнению, монтаж данного приводного узла достаточно прост и обычно не требует больших усилий.

Часть агрегата, представляющая собой непосредственно редуктор, в простейшем виде включает в себя валы с шестернями, опирающиеся на подшипники. Для получения необходимого диапазона передаточных чисел, применяются одноступенчатые, двухступенчатые, трехступенчатые и четырехступенчатые мотор-редукторы.

Устройство мотор-редуктора можно легко понять, рассмотрев пример с зубчатым цилиндрическим двухступенчатым узлом. Ведущая шестерня первой ступени закреплена непосредственно на валу электродвигателя. Этот же вал выступает в данном случае и входным валом редуктора. Крутящий момент передается от ведущей шестерни на промежуточный вал с блоком шестерен, а затем — на шестерню вторичного вала.

Таким образом в конце концов приводится в движение и непосредственно рабочий орган оборудования, на котором данный мотор-редуктор установлен. Одноступенчатый мотор-редуктор устроен еще проще: в картере агрегата имеется всего пара валов, и на каждом насажено всего по одной шестерне.

Стандартное исполнение мотор-редуктора предполагает предварительную грунтовку агрегата краской методом окунания, а затем — покрытие алкидной эмалью воздушной сушки (обычно синего или серого цвета). Для экстремальных условий эксплуатации и для монтажа на открытом воздухе применяются специальные покрытия моторов-редукторов.

В общем и целом агрегаты такого типа хорошо подходят для эксплуатации в условиях умеренного климата. Главное достоинство мотор-редуктора – высокий КПД, простой монтаж и минимальные затраты на обслуживание.

На сегодняшний день существует четыре основные разновидности редукторов, применяемых в одном корпусе с электродвигателем: цилиндрический, червячный, волновой и планетарный редукторы. Давайте рассмотрим каждый из этих видов более подробно.

Цилиндрический

Наиболее популярны в современной технике и промышленности именно цилиндрические мотор-редукторы. Агрегаты данного типа позволяют получить КПД более 90%, отличаются чрезвычайно медленной изнашиваемостью своих конструктивных элементов, показывают высокую эффективность даже в самых тяжелых условиях.

Цилиндрический мотор-редуктор способен работать долговременно и даже круглосуточно, питаясь от обычной сети с частотой тока 50 Гц, способной обеспечить приводу требуемую мощность.

Вал редуктора способен вращаться в любую сторону, обеспечивает стабильно высокий КПД на различных скоростях работы. Цилиндрические мотор-редукторы доступны по цене, их внедрение всегда экономически оправдано. Установка всегда выходит оперативной и удобной.

Червячный

Оптимальное решение для механизмов, функционирующих в повторно-кратковременном или непрерывном режиме — червячный мотор-редуктор. Сам привод неприхотлив в обслуживании, а агрегат очень прост в установке, от того и пользуется заслуженной популярностью. Кроме того здесь достижим очень широкий диапазон передаточных чисел — вплоть до 100. Червячный мотор-редуктор издает минимум шума во время работы, при этом отличается низкой вибрацией.

Немаловажная особенность червячного редуктора — характерная способность к самоторможению. Поднимая груз с использованием червячного редуктора, можно быть уверенным, что в случае выхода из строя электродвигателя или просто при его внезапной остановке, редуктор намертво остановится в одной точке и груз не упадет, а поэтому точно не будет поврежден.

При желании вал червячного редуктора может быть приведен во вращение в любую сторону, что крайне важно в грузоподъемных работах любой сферы, начиная от строительных, заканчивая транспортировочными. Для любых грузоподъемных и конвейерных систем данная опция червячного мотор-редуктора будет очень полезной.

Волновой

Волновые мотор-редукторы считаются одними из наиболее высокотехнологичных и современных в своем роде приводных агрегатов. Передача волнового типа сочетает в себе проверенную временем надежность зубчатой передачи и динамику гибких элементов.

Волновой мотор-редуктор в принципе применим в любой сфере промышленности, поскольку он всегда компактен, легок, позволяет получить большие передаточные числа несмотря на малое количество подвижных частей.

Узел легко герметизируется путем физического отделения приводящего электродвигателя, что позволяет применять редуктор данного типа даже в цехах с повышенной запыленностью и в условиях высокой взрывоопасности.

Волновой редуктор способен эффективно работать при любых нагрузках (как при низких, так и при высоких) в пределах его номинала, в условиях низких и высоких давлений. Агрегат отличается плавностью хода и высокой доступной точностью для приводимого рабочего органа.

Читать еще:  405 двигатель не работает лямбда зонд

Планетарный

Оптимальные эксплуатационные характеристики машине предоставит планетарный мотор-редуктор, отличающийся соосным расположением двигателя и привода. Планетарный агрегат отличается от редукторов других видов наименьшим весом и большей компактностью при высоких эксплуатационных характеристиках.

Данные особенности обуславливают применение планетарного мотор-редуктора например в конструкции стеклоочистителя автомобиля. Такое решение делает безопасным неравномерную загруженность вала редуктора на протяжении всего периода его эксплуатации с момента запуска до выключения. Нагрузка на вал может быть прямой или реверсивной на протяжении 8 — 24 часов непрерывной работы.

Планетарный редуктор хорошо подходит для эксплуатации в условиях низких давлений, может работать на высокоточном оборудовании. Подходит для работы при любом климате, даже с повышенной влажностью, стоит лишь настроить соответствующим образом двигатель.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Ранее на эту тему: Электропривод

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Узнаем передаточное число ПЛМ

Есть владельцы старых лодочных моторов. Есть (иногда) так же и необходимость узнать передаточное число редуктора. При этом, может не быть описания для ПЛМ или интернета под рукой. И в интернете может не быть тоже.

Для определения передаточного числа, мы можем воспользоваться простым способом и белым маркером.

Необходимо всего лишь нанести отметку на одну из лопастей гребного винта. Далее, нам нужно выставить лопасть так, что бы наша отметка совпала в верхней точке с линией вертикали. Лучше установить это положение, вращая маховик, на нейтральной передаче, разумеется.

Можно воспользоваться, для ориентира, пером анода, триммером, под антикавитационной плитой. Если анода или пера у вас там нет, просто поставьте еще одну отметку по центру плиты.

После этого, следует провернуть маховик по часовой стрелке три раза (оборота). Для большей точности, на маховике так же поставьте отметку. На четырехтактных лодочных моторах, она и так там есть.

Теперь смотрим на гребной винт. Точнее, на нашу отметку на нем. При определении ее положения, мы будем руководствоваться циферблатом стрелочных часов, где отметка будет играть роль часовой стрелки.

Если отметка окажется в положении около двух часов, то мы имеем дело с ПЧ около 2.45 : 1.

Если она оказалась в положении, примерно на «полчетвертого», то это явно нам говорит о том, что передаточное число редуктора нашего ПЛМ — 2.25 : 1.

При положении отметки на шести часах ровно, число составит 2.0 — 2.15 : 1.

На семи часах, передаточное число — 1.83 — 1.85 : 1.

А на девяти — 1.7 : 1.

При всех подобных манипуляциях, следует соблюдать два главных правила: 1. Убедиться, что ключ зажигания извлечен, мотор запуститься не может. 2. Вращать маховик лодочного мотора, следует только по часовой стрелке, дабы не завернуть лопасти крыльчатки системы охлаждения (не касается Honda 2.3).

Узнав передаточное число редуктора своего лодочного мотора, можно попробовать воспользоваться калькулятором скорости катера .

О важности передаточного числа редуктора ПЛМ. В принципе, оно не важно. Не важно, если у вас стандартный комплект лодка ПВХ + мотор, и вы по выходным выходите на нем на рыбалку. Важным оно становится, когда вы планируете учавствовать в соревнованиях по водномотоному спорту или, наоборот, тащить огромную баржу против течения. В этих случаях, передаточное число лодочного мотора и подбор соответствующего к нему гребного винта, выходит на верхние позиции по важности.

В большинстве же случаев, нет необходимости выбирать лодочный мотор, учитывая этот параметр. Для целей отдыха и рыбалки, отредактировать передаточное число можно гребным винтом.

Справочная информация по выбору редуктора

Редукторы (латинского слова reductor) получили широкое распространение во всех отраслях промышленного и аграрного хозяйства, поэтому их производство с каждым годом увеличивается, появляются новые модификации, совершенствуются уже существующие модели.

Редуктор служит для снижения частоты вращения тихоходного вала и увеличения усилия на выходном валу. Редуктор может иметь одну или несколько ступеней, цель которых увеличение передаточного отношения. По типу механической передачи редукторы могут быть червячными, коническими, планетарными или цилиндрическими. Конструктивно редуктор выполнен как отдельное изделие, работающее в паре с электродвигателем и установленное с ним на одной раме.

Промышленностью сегодня выпускаются редукторы общего и специального назначения.
Редукторы общего назначения могут применяться во многих случаях и отвечают общим требованиям. Специальные же редукторы имеют нестандартные характеристики подходящие под определенные требования.

Классификация, основные параметры редукторов

В зависимости от типа зубчатой передачи редукторы бывают цилиндрические, конические, волновые, планетарные, глобоидные и червячные. Широко применяются комбинированные редукторы, состоящие из нескольких совмещенных в одном корпусе типов передач (цилиндро-конические, цилиндро-червячные и т.д.).

Конструктивно редукторы могут передавать вращение между перекрещивающимися, пересекающимися и параллельными валами.
Так, например цилиндрические редукторы позволяют передать вращение между параллельными валами, конические — между пересекающимися, а червячные — между пересекающимися валами.

Читать еще:  Давление открытия форсунки дизельного двигателя

Общее передаточное число может достигать до нескольких десятков тысяч, и зависит от количества ступеней в редукторе. Широкое применение нашли редукторы, состоящие из одной, двух или трех ступеней, при чем они могут, как описывалось выше, совмещать разные типы зубчатых передач.

Ниже представлены наиболее популярные виды редукторов, серийно выпускаемые промышленностью.

Цилиндрические редукторы

Цилиндрические редукторы являются самыми популярными в машиностроении. Они позволяют передавать достаточно большие мощности, при этом КПД достигает 95%. Вращение передается между параллельными или соосными валами. Передаваемая мощность зависит от типоразмера редуктора. В цилиндрических редукторах применяются передачи, состоящие из прямозубых, косозубых или шевронных зубчатых колес. Количество цилиндрических передач напрямую влияет на передаточное отношение. Например, одноступенчатый редуктор может иметь передаточное число 1,5 до 10, две ступени — от 10 до 60, а три ступени — от 60 до 400.

Кинематические схемы наиболее распространенных видов цилиндрических редукторов представлены на рисунке ниже:

А) — Простой одноступенчатый цилиндрический редуктор
Б) – Двухступенчатый редуктор цилиндрический с несимметричным расположением зубчатых колес
В) – Трехступенчатый цилиндрический редуктор, входной вал быстроходной передачи изготовлен с двумя шестернями
Г) – Соосный цилиндрический редуктор
Д) — Соосный цилиндрический редуктор с симметричным расположением опор относительно тихоходной передачи
Е) — Соосный цилиндрический редуктор с шевронной быстроходной передачей
Ж) — Соосный цилиндрический редуктор с раздвоенной передачей
З) — Соосный цилиндрический редуктор с посаженными на быстроходный вал двумя косозубыми шестернями с противоположенным наклоном зубьев
И) – Трехступенчатый цилиндрический редуктор с раздвоенной быстроходной и тихоходной передачей

Червячные редукторы

Червячные редукторы получили большую популярность в виду своей простоты и достаточно низкой стоимости. Из всех видов червячных редукторов наиболее распространены редукторы с цилиндрическими или глобоидными червяками. Как и многие другие типы редукторов червячные могут состоять из одной или нескольких ступеней. На одноступенчатом редукторе передаточное отношение может быть в пределах 5-100, а на двух ступенях может достигать 10000. Основными достоинствами редукторов червячного типа являются компактные размеры, плавность хода и самоторможение. Из недостатков можно отметить не очень высокий КПД и ограниченная нагружаемая способность. Основными элементами являются зубчатое колесо и цилиндрический червяк. Цилиндрический червяк представляет собой винт с нанесенной на его поверхности резьбой определенного профиля. Число заходов зависит от передаточного отношения, и может составлять от 1 до 4. Вторым основным элементом редуктора является червячное колесо. Оно представляет собой зубчатое колесо из сплава бронзы, количество зубьев также зависит от передаточного отношения и может составлять 26-100.

В ниже приведенной таблице представлена зависимость передаточного отношения от количества зубов колеса и заходов винта.

Морской паровой двигатель — Marine steam engine

Морские паровой двигатель является паровым двигателем , который используется для питания корабля или лодки . В данной статье рассматриваются в основном морские паровые двигатели поршневого типа, которые использовались с момента создания парохода в начале 19 века до последних лет крупномасштабного производства во время Второй мировой войны . Поршневые паровые двигатели постепенно заменялись в морских приложениях в течение 20-го века паровыми турбинами и судовыми дизельными двигателями .

СОДЕРЖАНИЕ

  • 1 История
  • 2 Типа судовой паровой машины
  • 3 Двигатели, классифицируемые по механизму соединения
    • 3.1 Боковой рычаг
    • 3.2 Кузнечик
    • 3.3 Крейцкопф (квадрат)
    • 3.4 Шагающая балка
    • 3.5 Шпиль
    • 3,6 сиамский
    • 3.7 Прямое действие
    • 3.8 Колеблющийся
    • 3.9 Багажник
    • 3.10 Вибрационный рычаг
    • 3.11 Обратное действие
    • 3.12 Вертикальный
  • 4 Двигатели, классифицируемые по цилиндровой технологии
    • 4.1 Простое расширение
    • 4.2 Соединение
    • 4.3 Тройное или многократное расширение
    • 4.4 Кольцевой
  • 5 Прочие условия
    • 5.1 Простой
    • 5.2 Двойное действие
    • 5.3 Вертикальный, горизонтальный, наклонный, перевернутый
    • 5.4 редуктор
  • 6 См. Также
  • 7 Сноски
  • 8 ссылки
  • 9 Внешние ссылки

История

Первый коммерчески успешный паровой двигатель был разработан Томасом Ньюкоменом в 1712 году. Усовершенствования парового двигателя, внесенные Джеймсом Ваттом во второй половине 18-го века, значительно повысили эффективность парового двигателя и позволили сделать его более компактным. Успешная адаптация парового двигателя к морским применениям в Англии должна была подождать почти столетие после Ньюкомена, когда шотландский инженер Уильям Саймингтон построил в 1802 году «первый в мире практичный пароход » Charlotte Dundas . Соперничающие изобретатели Джеймс Рамси и Джон Фитч. были первыми, кто построил пароходы в США. Рамси выставил свой дизайн парохода в 1787 году на реке Потомак; однако Fitch выиграло соревнование в 1790 году после того, как его успешное испытание привело к созданию пассажирских перевозок на реке Делавэр. В 1807 году американец Роберт Фултон построил первый в мире коммерчески успешный пароход, известный просто как North River Steamboat , с двигателем Ватта.

После успеха Фултона технология пароходов быстро развивалась по обе стороны Атлантики . Первоначально пароходы имели малый радиус действия и не были особенно мореходными из-за своего веса, малой мощности и склонности к поломке, но они успешно использовались вдоль рек и каналов и для коротких путешествий вдоль побережья. Первый успешный трансатлантический переход на пароходе произошел в 1819 году, когда Саванна отплыла из Саванны, штат Джорджия, в Ливерпуль, Англия . Первым пароходом, совершавшим регулярные трансатлантические переходы, был колесный пароход Great Western в 1838 году.

Читать еще:  Что за жаровня в двигателе

В 19 веке морские паровые двигатели и пароходная техника развивались параллельно друг другу. Лопаточная силовая установка постепенно уступила место гребному винту , и введение железных, а затем и стальных корпусов вместо традиционного деревянного корпуса позволило кораблям расти еще больше, что потребовало паровых электростанций, которые становились все более сложными и мощными.

Типы судовой паровой машины

В течение 19 века было разработано большое количество поршневых судовых паровых двигателей. Два основных метода классификации таких двигателей — механизм соединения и технология цилиндров .

Большинство ранних судовых двигателей имели ту же технологию цилиндров (простое расширение, см. Ниже), но использовалось несколько различных методов подачи энергии на коленчатый вал (то есть соединительный механизм). Таким образом, ранние судовые двигатели классифицируются в основном по механизму соединения. Некоторыми распространенными механизмами соединения были боковые рычаги, шпильки, балансирные балки и механизмы прямого действия (см. Следующие разделы).

Однако паровые двигатели также можно классифицировать по цилиндровым технологиям (простые расширительные, составные, кольцевые и т. Д.). Таким образом, можно найти примеры двигателей, классифицируемых обоими методами. Двигатель может быть составным типом шагающей балки, составной — технологией цилиндра, а шагающей балкой — способом соединения. Со временем, когда большинство двигателей стало прямого действия, но технологии цилиндров стали более сложными, люди начали классифицировать двигатели исключительно в соответствии с технологией цилиндров.

Наиболее часто встречающиеся типы морских паровых двигателей перечислены в следующих разделах. Обратите внимание, что не все эти условия относятся исключительно к морским приложениям.

Классификация двигателей по механизму подключения

Боковой рычаг

Боковой рычаг двигателя был первым типом паровой машины, широко принятой для использования на море в Европе . В первые годы паровой навигации (с 1815 года) боковой рычаг был наиболее распространенным типом морского двигателя для внутренних водных путей и прибрежных перевозок в Европе, и в течение многих лет он оставался предпочтительным двигателем для морских перевозок по обе стороны моря. Атлантический .

Боковой рычаг представлял собой адаптацию самой ранней формы паровой машины — балочного двигателя . Типичный двигатель с боковыми рычагами имел пару тяжелых горизонтальных железных балок, известных как боковые рычаги, которые соединялись в центре с нижней частью двигателя с помощью штифта. Это соединение позволяло ограничить дугу поворота рычагов. Эти рычаги простирались со стороны цилиндра до каждой стороны нижней части вертикального цилиндра двигателя. Шток поршня, вертикально соединенный с поршнем, выходил из верхней части цилиндра. Этот стержень прикреплен к горизонтальной траверсе, соединенной на каждом конце с вертикальными стержнями (известными как боковые стержни). Эти стержни соединены с рычагами на каждой стороне цилиндра. Это обеспечивало соединение рычагов с поршнем на стороне цилиндра двигателя. Другая сторона рычагов (противоположный конец шарнира рычага к цилиндру) соединялась между собой горизонтальной поперечиной. Эта поперечная штанга, в свою очередь, соединялась и приводила в действие единственный шатун , который вращал коленчатый вал . Вращение коленчатого вала приводилось в движение рычагами, которые со стороны цилиндра приводились в движение вертикальными колебаниями поршня.

Основным недостатком двигателя с боковым рычагом было то, что он был большим и тяжелым. Для внутренних водных путей и прибрежных перевозок его вскоре заменили более легкие и эффективные конструкции. Однако на протяжении большей части первой половины XIX века он оставался доминирующим типом двигателей для морских перевозок из-за относительно низкого центра тяжести , что придавало кораблям большую устойчивость в сильном море. Это также был распространенный ранний тип двигателя для военных кораблей, поскольку его относительно небольшая высота делала его менее уязвимым к боевым повреждениям. С момента первого парохода Королевского флота в 1820 г. до 1840 г. на вооружение поступило 70 пароходов, большинство из которых с двигателями с боковым рычагом, с котлами, настроенными на максимальное давление 4 фунта на квадратный дюйм. Низкое давление пара требовало больших размеров цилиндров для двигателей с боковым рычагом, хотя эффективное давление на поршень было разницей между давлением в котле и вакуумом в конденсаторе.

Двигатель с боковым рычагом представлял собой лопаточный двигатель и не подходил для вращения гребных винтов . Последним судном, построенным для трансатлантических перевозок с боковым двигателем, был гребной пароход RMS Scotia компании Cunard Line, когда он поступил на вооружение в 1862 году, он считался анахронизмом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector