Что такое степень сжатия для дизельного двигателя
Как рассчитать и изменить степень сжатия двигателя
Что такое степень сжатия двигателя
Условно величину сжатия представляют и как соотношение давлений в устройстве при подаче горючего и взрыве смеси. Конкретно эта степень обусловлена конструкцией автомобильного двигателя, и может быть высокой или низкой.
Перед непосредственным процессом воспламенения горючей смеси, поршни сжимают топливо до определённого объёма. Инженеры способны варьировать этот показатель, рассчитывая его ещё на стадии проектирования. Узнав количественное соотношение данной величины к объёму камеры сгорания, можно делать различные выводы.
На бензиновых силовых установках показатель сжатия достигает максимум 12 единиц. Чем выше здесь степень сжатия двигателя или ССД, тем больше удельная мощность мотора. Однако при сильном увеличении данного показателя снижается ресурс агрегата, особенно при заправке низкосортным бензином. На дизельных моторах, ввиду их технических отличий, она может варьироваться от 14 до 18 единиц.
В бензиновые двигатели с увеличенной до 12 единиц степенью сжатия нельзя лить ничего, кроме АИ-98 Премиум. Очевидно, что это существенно удорожает расходы на топливо.
Влияние на мощность
Чем сильнее сжимается рабочая смесь, тем более высокое давление образуется в камере сгорания. Следовательно, поршень получает значительно больше энергии, которая естественным образом переходит на коленвал.
Вывод очевиден: чем выше степень сжатия — тем мощнее мотор. Но данный показатель не может увеличиваться бесконечно: при создании чрезмерно высокого давления может происходить крайне нежелательное явление — преждевременное воспламенение, называемое детонацией. Из-за него давление на поршень начинает создаваться еще до того, как он достигнет верхней позиции. Это становится причиной:
- мощных и резких ударных нагрузок;
- постоянного перегрева даже после непродолжительной работы;
- разрушения поршневых пальцев и колец;
- ощутимой потери динамики и мощности.
Поэтому степень сжатия должна определяться с учетом других рабочих характеристик и конструктивных особенностей конкретного двигателя.
На что она влияет
ССД непосредственно определяет объём работы, произведённой ДВС. Чем изначально выше рассчитана степень сжатия, тем продуктивнее будет воспламенение. Пропорционально увеличится и отдача мотора. Вспомним, как разработчики в 90-е годы старались повышать этот показатель, полностью не модернизируя двигатель. Таким способом они конкурировали между собой, делая агрегаты мощнее, и не затрачивая при этом много средств. Но что самое интересное — моторы в этом случае не потребляли больше горючего, а даже становились экономнее.
Однако всему есть предел, и как было сказано выше, чересчур высокий коэффициент приводит к снижению ресурса ДВС. Почему это происходит? Дело в том, что при значительном сжатии топливная смесь начинает самопроизвольно детонировать, взрываться. Особенно это затрагивает агрегаты на бензине, поэтому здесь данный коэффициент имеет строгое ограничение.
Помните, что применение низкооктанового топлива становится причиной детонации на агрегатах с повышенной ССД. И наоборот, высокооктановое горючее может не позволять двигателю полностью раскрываться, если будет использовано в агрегатах с низким коэффициентом сжатия. По этой причине оба параметра должны соответствовать. Подробнее в таблице ниже.
Отличие степени сжатия от компрессии
Степень сжатия двигателя не является компрессией. Они полностью различаются, хотя многие их путают. Коэффициент, о котором идёт речь в статье, не раскрывает значение оптимального давления ТВС перед возгоранием. Измеряется ССД лишь относительно, в соотношении к единице объёма камеры.
Под компрессией принято понимать предельное значение сжатия, образуемого в камере сгорания, на конечном этапе давления горючей смеси. Данная величина априори не может быть относительной, поэтому её измеряют в абсолютных значениях — атм, кг/см2, бар.
Степень сжатия и компрессия неразрывно связаны, но не идентичны. Показатель компрессии зависит не только от сжатия. На него оказывает влияние температура ДВС, наличие зазоров в приводных клапанах, состав топлива и многое другое.
Расчет сжатия
Рассмотрим, как узнать степень сжатия двигателя.
Она вычисляется по формуле:
Здесь Vр означает рабочий объем отдельного цилиндра, а Vс – значение объема камеры сгорания. Формула показывает важность значения объема камеры: если его, например, снизить, то параметр сжатия станет больше. То же произойдет и в случае увеличения объема цилиндра.
Чтобы узнать рабочий объем, нужно знать диаметр цилиндра и ход поршня. Вычисляется показатель по формуле:
Здесь D – диаметр, а S – ход поршня.
Поскольку камера сгорания имеет сложную форму, ее объем обычно измеряется методом заливания в нее жидкости. Узнав, сколько воды поместилось в камеру, можно определить и ее объем. Для определения удобно использовать именно воду из-за удельного веса в 1 грамм на куб. см – сколько залилось грамм, столько и «кубиков» в цилиндре.
Расчет коэффициента сжатия
Ввиду того, что желательно увеличивать степень сжатия до определённого значения, необходимо уметь рассчитывать этот показатель. К тому же это даст возможность избежать детонационных моментов, разрушающих силовой агрегат изнутри в процессе форсирования.
Таким образом, необходимость в измерении этого показателя требуется в таких случаях, как:
- форсировка мотора;
- подгонка под топливо с другим АИ или для метанового топлива с октановым числом 120;
- послеремонтная корректировка.
Для чего бывает нужно изменить коэффициент сжатия
Необходимость изменения этого параметра ДВС возникает довольно редко. Можно перечислить всего несколько причин, побуждающих сделать такое.
- Форсирование двигателя.
- Желание приспособить мотор для работы на бензине с другим октановым числом. Было время, когда газовое оборудование для авто не встречалось в продаже. Не было и газа на заправках. Поэтому советские автовладельцы часто переделывали двигатели для работы на более дешевом низкооктановом бензине.
- Неудачный ремонт мотора, для ликвидации последствий которого требуется корректировка коэффициента сжатия. К примеру, фрезеровка головки блока после слишком сильной тепловой деформации. Когда выровнять сопрягаемую с блоком цилиндров поверхность удается ценой снятия слоя металла чрезмерно большой толщины. От этого значение коэффициента увеличивается столь сильно, что работа на бензине, для которого был рассчитан мотор, становится невозможной.
Турбированные моторы
На турбомоторах расчёт коэффициента сжатия отличается. Это объясняется наличием наддува воздуха. Поэтому в этом случае величину, полученную в ходе вычислений, умножают на показатель турбокомпрессора.
Кроме того, при вычислении степени сжатия турбированных моторов учитывается не только давление наддува, но и показатель эффективного сжатия, климатические изменения и многое другое. В данном случае процесс значительно усложняется по сравнению с измерениями на атмосферном двигателе.
Пример подсчета
Вот как выглядит общепринятая расчётная формула для автомобильного ДВС: «ССД = (РО+ОКС)/ОКС». Степень сжатия здесь о, рабочий объём цилиндра — «РО», а объём камеры сгорания — «ОКС».
Для расчёта «РО» нужно в первую очередь разложить единый объём двигателя или литраж на количество используемых цилиндров. К примеру, литраж мотора «четвёрки» — 1997 см3. Для определения ёмкости одного цилиндра, надо 1997 разделить на 4. Получится около 499 см3.
Для вычисления параметра «ОКС» специалисты пользуются проградуированной в см3 трубкой или пипеткой. Под камерой подразумевается место, где непосредственно происходит возгорание горючего. Камеру заправляют, а затем измеряют объём с помощью жидкостной бюретки. Если нет градуированной трубочки, можно жидкость выкачать с помощью шприца, а затем измерить в мерной посуде или на весах. В этом случае желательно для расчёта использовать не бензин или солярку, а чистую воду, так как её удельный вес более соотносим к объёму в см3.
Внимание! Для точного измерения «ОКС» дополнительно приплюсовывается объём толщины прокладки ГБЦ, учитывается форма днища поршней и другие особенности. Поэтому расчёт этой величины рекомендуется доверить специалистам.
Как увеличить степень сжатия двигателя
Если необходимо увеличить данный показатель, используют несколько способов:
- расточка блока и установка поршней с большим диаметром;
- уменьшение объёма камеры сгорания путём удаления слоя металла в месте соединения ГБЦ.
Нельзя забывать, что в некоторых случаях потребуется инсталляция модернизированных поршней. Это делается, чтобы исключить такое нежелательное последствие, как встреча поршней с клапанами. В частности, на элементах увеличивают выемки клапанов. Также в обязательном порядке корректируются заново фазы газораспределения.
Интересно, что лучше всех раскрыли потенциал степени сжатия ДВС японские производители. В то время как европейские автокомпании пошли путём усовершенствования гибридных моторов, японцам удалось увеличить ССД до 14 единиц и на бензиновых силовых агрегатах, применив изменяемую величину. Но как это возможно без детонационных моментов? Всё оказалось просто. Оказывается, нужно охладить камеру, где происходит возгорание. Тогда можно будет без опасения сжимать смесь. И вовсе не обязательно для этого использовать прохладный воздух: достаточно модернизировать систему выпуска.
Приём, давно известный ещё по гоночным движкам. Выпускные каналы меняются согласно схеме 4-2-1. Порции выхлопных газов здесь не мешаются, поочерёдно вылетают в трубу. Благодаря такой чёткой системе выхлопа, улучшается продувка цилиндров, где остаётся меньше горячих газов.
Секрет японской формулы, согласно которой можно без опаски сжимать горючую смесь, имеет строго математическое соотношение. Так, если процент выхлопа снизить в 2 раза, ССД можно поднимать на 3 единицы, но не больше. Если же при этом ещё и охлаждать воздух, поступающий в цилиндры, можно приплюсовать ещё одну единицу.
Однако для реализации данного метода нужно будет еще модернизировать газообмен, раскошелившись на фазовращатели обоих распредвалов. Вдобавок потребуется доработать некоторые моменты. К примеру, изменить длину поршневого хода посредством компьютерного вмешательства.
Применяется система изменяемого коэффициента на многих японских движках, например, для Inflniti. Способность автоматически менять этот показатель сжатия в зависимости от нагрузки позволяет значительно повышать КПД мотора, особенно турбированного. Каждая порция смеси сгорает при оптимальном на данный момент работы сжатии. Так, если нагрузки на мотор незначительные и смесь обеднённая, включается максимальное сжатие. И наоборот, в нагруженном режиме задействуется минимальная степень, так как бензина впрыскивается много и возможна детонация.
Таким образом, передовая система изменения ССД позволяет вдвое уменьшать литраж мотора, сохраняя при этом мощность и динамические характеристики.
Курс на увеличение степени сжатия двигателя наблюдался и в середине 20 века в США. Основная масса американских двигателей, выпущенных в 70-е годы, находилась в пределах 11-13 единиц. Но работали они только на очень качественном, высокооктановом топливе, получаемом путём этилирования. После того как этилирование запретили, в серийных образцах ДВС наблюдалось снижение показателя сжатия.
Важно знать, что прирост мощности будет наиболее заметен на двигателях, штатно работающих на низкой степени сжатия. Например, моторы с показателем 8 единиц, доведённые до 10, выдадут больше мощности, чем агрегаты со стоковым параметром 11 единиц, форсированные до 12.
Изменение коэффициента сжатия
Зачем менять степень?
На практике такая необходимость возникает нечасто. Менять сжатие может понадобиться:
- при желании форсировать двигатель;
- если нужно приспособить силовой агрегат под работу на нестандартном для него бензине, с отличающимся от рекомендованного октановым числом. Так поступали, например, советские автовладельцы, поскольку комплектов для переоборудования машины на газ в продаже не встречалось, но желание сэкономить на бензине имелось;
- после неудачного ремонта, чтобы устранить последствия некорректного вмешательства. Это может быть тепловая деформация ГБЦ, после которой нужна фрезеровка. После того, как повысили степень сжатия двигателя снятием слоя металла, работа на изначально предназначенном для него бензине становится невозможной.
Иногда меняют степень сжатия при конвертации автомобилей для езды на метановом топливе. У метана октановое число – 120, что требует повышать сжатие для ряда бензиновых автомобилей, и понижать – для дизелей (СЖ находится в пределах 12-14).
Дефорсирование ДВС: для чего нужно и как осуществить
Иногда бывает необходимо уменьшить показатель сжатия. В этом случае устанавливается дополнительная металлическая прокладка ГБЦ. Можно использовать две прокладки вместо одной, тем самым утолщая промежуток — объём камеры растёт за счёт высоты головки блока. Более сложный способ подразумевает укорочение поршня — удаление верхнего слоя на токарном станке.
Дефорсирование двигателя, как правило, процедура вынужденная. В том числе это делается для снижения налоговых выплат или в целях увеличения ресурса агрегата. Как известно, моторы с низкой степенью сжатия дольше работают, меньше подвержены износу. Однако любой такой процесс усложняется законом, чтобы недобросовестные владельцы искусственно не занижали технические данные.
Что касается снижения показателя сжатия на турбированных моторах, то здесь потребуется модернизация системы электрики с датчиками, всей поршневой группы и форсунок, если это дизельный агрегат.
В отдельных случаях дефорсированию предпочитают свап, когда менее мощный контрактный мотор устанавливают вместо штатного.
Сравниваем бензиновый и дизельный двигатель
в Двигатель 04.01.2018 2,004 Просмотров
Выбирая новый автомобиль, непременно встает вопрос, «Какой двигатель мне выбрать: бензиновый или дизельный?». Конечно, и дизельный и бензиновый двигатели имеют как недостатки, так и неоспоримые достоинства и выбор предопределяют личные предпочтения и условия автолюбителя. Давайте рассмотрим, какими плюсам и минусами обладают данные ДВС, чтобы упростить выбор при подборе идеального двигателя.
Какие двигатели более надежные: бензиновые или дизельные
Итак, дизельный двигатель.
Один из самых неоспоримых преимуществ дизельного двигателя является меньший расход топлива, примерно на 20-30% ниже, чем у бензинового. Степень сжатия воздуха в дизеле она равна 20 единицам, тогда как в бензиновом двигателе достигается не более 10 единиц. Еще одно из немаловажных преимуществ современного двигателя на дизельном топливе является его более высокая экологичность. К тому же дизельное топливо испаряется менее интенсивно, чем бензин, что уменьшает вероятность возгорания. При идентичном объеме двигателя максимальная мощность больше у бензинового, однако, крутящий момент гораздо ниже, чем у дизельного собрата.
Существенный минус дизеля, который беспокоит большинство автолюбителей – это сложность технического обслуживания и ремонта. Найти автосервис, готовый взяться за работу с более тонким механизмом дизеля, довольно сложно. К тому же промежуток между техническим обслуживанием у автомобиля на дизеле гораздо ниже, а цена на него выше. Этот недостаток может стать серьезным препятствием при выборе дизельного двигателя, но только в случае, если автомобиль вам нужен для кратковременного пользования и недалеких переездов. Дизель прекрасно показывает себя и окупает в случаях, если вы планируете долго владеть автомобилем или вам требуется надежный «железный конь» в дальних разъездах. Еще один минус дизельного топлива – это низкая морозостойкость. Обычная солярка на морозе быстро густеет и автомобиль отказывается заводиться. Если вы живете в регионе, где нередки минусовые температуры, вам придется запасаться специальной «зимней» соляркой или точно знать на каких заправках ее можно будет найти зимой. Также, если продолжить тему морозов, недостатком дизельного двигателя можно назвать медленное прогревание.
А теперь рассмотрим бензиновый двигатель.
Конечно же, самое главное преимущество бензинового двигателя – это его популярность. Благодаря тому, что автомобили на бензине более популярны, техническое обслуживание и ремонт можно осуществить в любой ближайшей автомастерской, а запчасти легче достать и заменить. И, как следствие, стоимость обслуживания гораздо ниже, чем у дизельного двигателя. Кроме того, у бензинового двигателя максимальная мощность, несомненно, выше чем у дизеля. У бензинового двигателя выше частота вращения, на высоких оборотах двигателю наносится минимальный ущерб. С топливом меньше проблем, такой автомобиль фактически «всеяден», что бывает актуально, если нет поблизости качественного бензина. И, конечно, бензиновому двигателю не страшен мороз, проблем со стартом значительно меньше, чем у дизеля.
К минусам бензинового двигателя относится высокий расход топлива из-за системы сжигания, а также более высокая взрывоопасность. У бензинового двигателя более низкая износостойкость, однако это компенсируется тем, что запчасти на замену найти не составляет больших проблем.
Итак, подводя итоги в сравнении бензинового и дизельного двигателя, можно ли сказать какой из них обладает неоспоримыми преимуществами? Этот вопрос решать только будущему автовладельцу. Что для вас комфортнее – меньшая потребляемость топлива и надежный двигатель в дальней дороге или большая маневренность, морозостойкость и легкость обслуживания или другие характеристики.
Диск СГЭО (Лекции_СГЭО_ВЗО_2012) / Глава_5_Сжатие в дизеле
Глава 5. ПРОЦЕСС СЖАТИЯ В ДИЗЕЛЕ (с. 74)
§ 5.1. Назначение и общая характеристика процесса сжатия в дизеле (с. 74)
Назначение процесса сжатия в дизеле :
повышение температуры в цилиндре для обеспечения самовос — пламенения топлива ;
получение высокого термического КПД цикла за счет высокого уровня температур подвода теплоты в цикл при последующем сгорании топлива .
Процесс сжатия сопровождается следующими явлениями:
— изменением площади поверхности контакта между воздушным зарядом цилиндра и его стенками по ходу поршня;
— переменным по направлению и интенсивности теплообменом между зарядом и стенками цилиндра;
— утечками заряда через « неплотности» полости цилиндра;
— испарением части топлива, впрыснутого в цилиндр до ВМТ; испарение сопровождается отбором от воздушного заряда теплоты парообразования.
Таким образом, сжатие в дизеле можно рассматривать как политропный процесс с переменным показателем политропы.
§ 5.2. Изменение показателя политропы в процессе сжатия , средний показатель политропы сжатия (с. 75)
…. приведем на рис. 5.1 диаграмму взаимного расположения различных политропных процессов.
Затраченная на сжатие
извне теплота +q расходу-
ются на повышение вну-
тренней энергии +ΔU ( +ΔT )
Затраченная на сжатие
повышение внутр. энергии раб. тела +ΔU ( +ΔT ) и
отвод теплоты от раб. тела −q .
Отвод теплоты −q от раб. тела столь интенсивен, что при этом отводится не только энергия, затраченная на сжатие −l , но и часть внутр. энергии
Рис. 5.1. Взаимное
Различные области политропных процессов на рис. 5.1 интерпретированы с точки зрения « взаимодействия» членов уравнения первого закона термодинамики: q = U + l – теплота, подведенная к рабочему телу q в каком-либо процессе, расходуется на изменение его внутренней энергии U и совершение механической работы l .
Процесс сжатия в координатах p − V изображен на рис . 5.2.
В начале сжатия температура заряда
стенок цилиндра T . В результате
теплота подводится ст к заряду от стенок
( +q ). Поэтому в указанной части
процесса « мгновенный» показатель
политропы n 1 м
> k 1 (больше показателя
В ходе сжатия температура заряда
цилиндра повышается, и в некото-
рый момент времени наступает
равенство T = T ст . В это мгновение
теплота не подводится к заряду и не
отводится от него ( q =0).
Это означает, что в данный момент
Рис. 5.2. Процесс сжатия в
имеет место « мгновенный» адиа-
батный процесс, то есть n 1 м = k 1 .
При дальнейшем сжатии температура заряда превышает
температуру стенок ( T > T ), теплота отводится от заряда в стенки
( −q ) и « мгновенный» показатель политропы n м 1
Для упрощения расчетов принимают условный постоянный
= const , значение которого обеспечивает работу
сжатия, равную работе при переменном показателе n м
В расчетах циклов большинства судовых ДВС
уровне 1,37–1,38. Заметим, что эти значения близки к значению
показателя адиабаты для воздуха ( k 1 =1,4), т.к. обмен теплотой
между рабочим телом и стенками цилиндра по количеству
передаваемой теплоты не существенен.
§ 5.3. Влияние различных факторов на показатель
политропы сжатия (с. 77)
На рис. 5.3 (фрагмент рисунка 5.1)
представлена, в частности, область с
показателями политропы 1,0 n 1 k .
Показатель адиабаты принят k
С учетом того, что показатель
определяется на уровне
политропы проведена вблизи к линии
Рис. 5.3. Положение
Анализ сводится к рассуждениям о
политропы сжатия в двигателе
« приближении» линии процесса
n 1 ) относительно других
сжатия либо к адиабате ( n 1 = k
к изотерме ( n 1
=1,0) под влиянием
того или иного фактора.
Если фактор способствует уменьшению потери теплоты из цикла в ходе сжатия, то это увеличивает n 1 , то есть приближает процесс к адиабате. При увеличении потери теплоты n 1 уменьшается, что означает перемещение линии процесса в сторону изотермы.
1) ВЛИЯНИЕ ЧАСТОТЫ ВРАЩЕНИЯ: n 1 − при − n
Это объясняется тем, что сокращается продолжительность сжатия. Поэтому уменьшается потеря теплоты из цилиндра двигателя, то есть сжатие приближается к адиабатному.
2) ВЛИЯНИЕ РАЗМЕРОВ ЦИЛИНДРА: n 1 − при − D и S
При этом уменьшается контактирующая с воздухом площадь поверхности стенок, приходящаяся на единицу объема цилиндра. Поэтому тепловой поток от рабочего тела в стенки сокращается и, соответственно, увеличивается n 1 .
3) ВЛИЯНИЕ КОНСТРУКЦИИ КАМЕРЫ СГОРАНИЯ:
n 1 − при неразделенных КС по сравнению разделеными КС .
При этом, как и в предыдущем случае, имеет место уменьшенная контактирующая с воздухом площадь поверхности стенок, которая приходится на единицу объема цилиндра, уменьшенный тепловой поток и, соответственно, повышенный n 1 .
4) ВЛИЯНИЕ ОХЛАЖДЕНИЯ ПОРШНЯ: n 1 − при отсутствии охлаждения .
Ввиду малости тепловых потоков, сжатие происходит по политропе с повышенным n 1 .
5) ВЛИЯНИЕ ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ВОДЫ:
n 1 − при − Т охл
При этом уменьшается перепад температур на стенках цилиндра, соответственно, сокращается тепловой поток через стенки и, как результат, увеличивается n 1 .
6) ВЛИЯНИЕ ГЕРМЕТИЧНОСТИ ПОЛОСТИ ЦИЛИНДРА: n 1 − при − улучшениигерметичности .
Уменьшаются утечки рабочего тела из цилиндра. Утечки в можно рассматривать как эквивалент потерь теплоты. Поэтому при повышении уровня герметичности цилиндра увеличивается.
7) ВЛИЯНИЕ РЕЖИМА РАБОТЫ ДВИГАТЕЛЯ: n 1 ↓ при переходе к малонагруженным режимам .
Стенки цилиндра имеют пониженную температуру, доля теплоты, теряемой через стенки цилиндра, по отношению к теплоте, преобразовываемой в полезную механическую работу, велика.
В данном случае получению сниженного также способствует малая частота вращения коленчатого вала n .
§ 5.4. Уравнение среднего показателя политропы сжатия
Ввиду рассмотренной выше близости политропы сжатия к адиабате можно принять n 1 ≈ k 1 . Считается, что в итоге в теплообмене заряда со стенкой имеет место нулевое количество переданной теплоты ( q =0).
ВЫВОД УРАВНЕНИЯ ПОКАЗАТЕЛЯ ПОЛИТРОПЫ СЖАТИЯ
Уравнение первого закона термодинамики
запишем применительно к процессу сжатия в дизеле :
Рабочий процесс четырехтактного дизельного двигателя
Первый такт — впуск.
Устройство двигателя современного
автомобиля, устройство систем и механизмов
Поршень перемещается от ВМТ к НМТ, через открытый впускной клапан в цилиндр поступает очищенный воздух (из-за разрежения, создаваемого поршнем). Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура повышается и в конце такта впуска достигает 300—320 К, а давление 0.08—0.09 МПа. Коэффициент наполнения цилиндра 0,9 и выше, т. е. больше, чем у карбюраторного двигателя.
Компановка двигателя
4-хтактные дизельные двигатели отличаются не только строением камеры сгорания, но и количеством цилиндров и их взаимным расположением. Понятно, что чем больше цилиндров, тем мощнее двигатель и тем он больше по размерам. Разные варианты компоновки позволяют уменьшить его габариты. В зависимости от расположения цилиндров двигатели могут быть:
Все цилиндры располагаются в ряд. Такая конструкция двигателей самая простая, детали к ним имеют несложную технологию производства.
2. V- образный двигатель . Цилиндры в таком двигателе расставлены в форме буквы V, в двух плоскостях, двумя рядами под углом 600 или 900. Образовавшийся между ними угол – это угол развала. Плюсом такого двигателя является мощность. Его габариты могут быть уменьшены за счет смещения в развал других важных компонентов. Его длина меньше, а ширина больше. Но из-за сложности таких конструкций бывает непросто определить центр их тяжести. 3. Оппозитные двигатели (маркировка В) . Они относительно уравновешены, для уменьшения вибрации все элементы располагают симметрично. Их конструктивная особенность – центральное крепление вала на жестком блоке. Это так же влияет на степень вибрации. Угол развала составляет 1800. 4. Рядно-смещенные агрегаты (маркировки VR) . Данную компоновку отличает малый угол развала (150) V-образного двигателя в содружестве с рядным аналогом. Это позволяет уменьшить размеры продольного и поперечного агрегатов. Маркировка VR расшифровывается как V – образный, R — рядный. 5. W (или дубль V) — образный . Самый сложный двигатель. Известен двумя видами компоновки. 1) Три ряда, угол развала большой. 2) Две компоновки VR. Они компактны, несмотря на большое количество цилиндров. 6. Радиальный (звездообразный) поршневой двигатель . Имеет небольшой размер длины с плотным размещение нескольких штук цилиндров. Они располагаются вокруг коленчатого вала радиальными лучами с равными углами. Ее отличает от других наличие кривошипно-шатунного механизма. В данной конструкции один цилиндр выступает главным, остальные – прицепные – крепятся к первому по периферии. Недостаток: в состоянии покоя нижние цилиндры могут пострадать от протекания масла. Рекомендуют до начала запуска двигателя проверить, что в нижних цилиндрах масло отсутствует. В противном случае возможны гидроудар и поломка. Чтобы увеличить размер и мощность двигателя, достаточно удлинить коленчатый вал образованием нескольких рядов – звезд.
Второй такт — сжатие.
Как устроен простейший двигатель?
Устройство двигателя для детей
Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и в конце такта составляют соответственно 3—5 МПа и 800—900 К. Степень сжатия регламентируется исправностью деталей КШМ и равна 17—21.
Третий такт — рабочий ход.
В конце такта сжатия (20—30 градусов угла поворота коленчатого вала ло прихода поршня в ВМТ) с помощью насоса через форсунку в цилиндр под высоким давлением (15—20 МПа) в мелкораспыленном виде впрыскивается порция топлива. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с нагретым воздухом и воспламеняются. При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличиваются лишение и температура образовавшихся газов. В начале такта расширения давление газов составляет 7—8 МПа. а температура 2100—2300 К. Под действием давления поршень перемешается от ВМТ к НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют 0,2-0,4 МПа .
Преимущества четырёхтактных двигателей:
В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтактного двигателя находится в масляной ванне. Благодаря этому нет необходимости смешивать бензин с маслом или доливать масло в специальный бачок. Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей.
Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс топливной смеси в выхлопную трубу, что объясняется его конструкцией.
Четвертый такт — выпуск.
Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200. После этого рабочий цикл дизеля повторяется. В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).
Рабочий цикл четырехтактного дизельного двигателя
Первый такт – впуск, служит для наполнения цилиндра двигателя только воздухом. При движении поршня от верхней мертвой точки к нижней мертвой точке происходит всасывание воздуха через открытый впускной клапан.
Второй такт – сжатие. В конце такта сжатия в камеру сгорания через форсунку под очень высоким давлением подается дизельное топливо, которое самовоспламеняется за счет высокой температуры сжатого воздуха. Оба клапана закрыты.
Третий такт – рабочий ход. При сгорании дизельного топлива расширяющиеся газы создают усилие, которое перемещает поршень к нижней мертвой точке и через шатун проворачивает коленчатый вал. Оба клапана закрыты.
Четвертый такт – выпуск отработавших газов, служит для освобождения цилиндра от отработавших газов. Поршень от нижней мертвой точки поднимается к верхней мертвой точке и, через открытый выпускной клапан, выталкивает отработавшие газы.
При последующем движении вниз поршень засасывает свежую порцию воздуха, происходит такт впуска и рабочий цикл повторяется.
Преимущества дизельных двигателей по сравнению с карбюраторными:
- Большая экономичность (25-30%) благодаря большей степени сжатия (и более дешевому топливу)
- Менее пожароопасны
- Не имеют системы зажигания
- Топливо содержит меньше вредных веществ, т.е. двигатель экологичнее
- Дизели развивают больший крутящий момент при меньшей частоте вращения коленчатого вала
Недостатки дизельных двигателей:
- Затрудненный по сравнению с карбюраторными двигателями пуск, особенно в зимнее время
- Расход металла на единицу мощности на 30% больше, чем у карбюраторных (более металлоемкие)
- Более шумная и жесткая работа
- Технологически и технически более сложные процессы изготовления и обслуживания
В инжекторных двигателях через впускной клапан всасывается воздух (а не горючая смесь), а топливо подается в конце 2 такта (сжатие), свеча воспламеняет его, далее рабочий ход, выпуск как у карбюраторного двигателя. Отличие от карбюраторных – всасывается только воздух, топливо – через форсунку. Отличие от дизельных – воспламенение от свечи.
Рабочий цикл двухтактного двигателя
В двухтактных двигателях один рабочий цикл происходит за один оборот коленчатого вала. Другая их особенность — отсутствие клапанов (впускных и выпускных) с механическим приводом. Их роль выполняет сам поршень, открывая и закрывая специальные окна и каналы на зеркале цилиндра. Объем картера под поршнем также используется при газообмене.
Цикл карбюраторного двигателя (рис.2.7.): 1. Такт сжатия. Поршень перемещается от нижней мертвой точки к верхней, перекрывая сначала продувочный 1, а затем выпускной 2 каналы. После закрытия поршнем выпускного канала в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере 6, вследствие ее герметичности и после того как поршень перекрывает продувочный канал, под поршнем создается разряжение, под действием которого из карбюратора через впускной канал и открывающийся клапан поступает горючая смесь в кривошипную камеру.
2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно, опускаясь вниз, поршень создает давление в кривошипной камере (сжимая топливовоздушную смесь в ней) и закрывает впускной канал, не давая, таким образом, горючей смеси снова попасть во впускной коллектор и затем в карбюратор.
Цикл дизельного двигателя: Цикл аналогичен циклу карбюраторного двигателя, за исключения того, что в впускной канал подается не горючая смесь, а воздух. Топливо, как и у четырехтактного двигателя, подается в камеру сгорания через форсунку под очень высоким давлением. Топливо самовоспламеняется за счет высокой температуры сжатого воздуха.
Рис. 2.7. Рабочий цикл двухтактного карбюраторного двигателя: а — впуск в кривошипную камеру, сжатие в цилиндре; б — воспламенение (до ВМТ) и последующее сгорание в цилиндре; в — выпуск отработавших газов из цилиндра и продувка горючей смесью из картера; 1 — продувочный канал; 2 — выпускной канал; 3 — свеча зажигания; 4 — лепестковый клапан во впускном канале; 5 — впускной канал; 6 — кривошипная камера;
Преимущества двухтактных двигателей перед четырехтактными :
1. Более равномерная работа, т.к. рабочий цикл происходит за 1 оборот коленвала. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако, меньшим КПД.
2. отсутствие громоздких систем смазки и газораспределения, как следствие — проще и дешевле в изготовлении
Недостатки двухтактных двигателей:
1. По экономичности уступают четырехтактным двигателям из-за менее совершенной очистки цилиндра от отработанных газов (более низкий КПД)
2. Больший расход топлива. Продувка осуществляется горючей смесью, что приводит к потере до 30% смеси
3. Требуют более интенсивного охлаждения
4. Добавление масла (до 4%) в бензин для смазки деталей двигателя приводит к увеличению отложения нагара на деталях двигателя
5. Неудовлетворительная продувка на режимах малых оборотов из-за низкого давления в кривошипной камере приводит к пропускам воспламенения рабочей смеси
6. Наличие впускных и выпускных каналов уменьшает продолжительность рабочего хода
Поэтому двухтактные двигатели в настоящее время применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизованных инструментах
ЯМЗ с 1947 по 1993 г. выпускал 2-хтактные рядные дизельные двигатели ЯМЗ-204 (4-х цилиндровые, мощностью 112 л.с.) и ЯМЗ-206 (6-цилиндровые, мощностью 165 л.с.). За 46 лет ЯМЗ выпустил около 1 миллиона таких двигателей. 4 цилиндровые устанавливались на автомобили грузоподъемностью 7 т, а 6 цилиндровые – на автомобили грузоподъемностью 12 т собственного производства. С переходом завода на выпуск 4-х тактных двигателей в 60-х годах 2-х тактные двигатели стали применяться в основном на стационарных установках (дизель – генераторы и др.).
Многоцилиндровые двигатели
Из рассмотренных рабочих циклов видно, что полезная работа совершается только в течение одного такта – рабочего хода, остальные три такта – вспомогательные, и на их осуществление затрачивается часть энергии. Энергия, полученная при рабочем ходе, накапливается маховиком – массивным диском, установленном на конце коленчатого вала (рис. 2.7.).
В целях получения большей мощности и равномерности вращения коленчатого вала двигатели делают многоцилиндровыми.
Сумма рабочих объемом всех цилиндров многоцилиндрового двигателя, выраженная в литрах, называется рабочим объемом двигателя или литражом.
Рис. 2.8. Коленчатый вал двигателя с маховиком: 1 – шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя |
Так, в четырех цилиндровом двигателе за 2 оборота коленвала совершается уже не один, а четыре рабочих хода (по одному в каждом цилиндре). Для равномерной и плавной работы многоцилиндрового двигателя одноименные такты должны чередоваться в определенной последовательности. Эта установленная последовательность называется порядком работы двигателя.
Порядок работы двигателя зависит от расположения шатунных шеек с кривошипами на коленчатом валу и кулачков на распределительном валу (входят в механизм газораспределения).
Если в 4-х цилиндровом двигателе (рис. 2.9) , у которого шатунные шейки расположены попарно под углом 180° (первая с четвертой, вторая с третьей) в одной плоскости, в первом цилиндре в течение в течение первого полуоборота коленвала происходит рабочий ход, то в четвертом – впуск. При этом поршни второго и третьего цилиндров одновременно будут двигаться вверх, совершая соответственно выпуск и сжатие.
Следовательно, за следующие 3 полуоборота коленвала произойдет рабочий ход последовательно в третьем, затем в четвертом, и, наконец, во втором цилиндрах.
о б о р о т а коленвала
Порядок работы необходимо знать для правильного присоединения проводоввысокого напряжения к свечам при установке зажигания, а также для регулировки тепловых зазоров в механизме газораспределения.