8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое вакуум в двигателе

Гидровакуумный усилитель тормозов

Гидровакуумный усилитель тормозов дает возможность остановить автомобиль с меньшей затратой физической силы водителя.

Принцип действия усилителя заключается в использовании разрежения во впускной трубе двигателя для создания дополнительного давления в системе гидравлического привода рабочей тормозной системы.

При выходе из строя или нарушении герметичности вакуумного трубопровода или гидровакуумного усилителя резко снижается эффективность торможения.

Вследствие нарушения герметичности вакуумной системы во впускную трубу двигателя происходит постоянный подсос воздуха, который настолько обедняет смесь в седьмом и частично в четвертом цилиндрах, что воспламенение ее от искры не происходит. Несгоревшая рабочая смесь смывает смазку с зеркала цилиндра и приводит к сухому трению поршня и поршневых колец о гильзу, а наличие дорожной пыли усугубляет сухое трение и приводит аварийному износу деталей в указанных цилиндрах.

Гидровакуумный усилитель состоит из камеры усилителя, гидравлического цилиндра и клапана управления. Корпус камеры соединяется с впускной трубой и атмосферой через клапан управления.

Гидровакуумный усилитель тормозов

  1. диафрагма
  2. корпус
  3. тарелка диафрагмы
  4. толкатель поршня
  5. пружина
  6. вакуумный клапан
  7. атмосферный клапан
  8. крышка корпуса
  9. пружина атмосферного клапана
  10. корпус клапана управления
  11. пружина клапана
  12. поршень клапана управления
  13. перепускной клапан
  14. поршень
  15. клапан поршня
  16. манжета поршня
  17. толкатель клапана
  18. упорная шайба поршня
  19. цилиндр

Схема действия гидровакуумного усилителя. Момент торможения.

Работу гидровакуумного усилителя можно уяснить по схеме, приведенной выше. Если двигатель работает и тормозная педаль не нажата, то вакуум, образующийся во впускной трубе, передается в полости I и II клапана управления и в полости III и IV корпуса камеры усилителя. При этом давление на диафрагму 1 усилителя с обеих сторон одинаково, и она под действием пружины 5 занимает исходное положение.

При нажатии на тормозную педаль жидкость из главного цилиндра через трубопровод под давлением подается к гидравлическому цилиндру усилителя. Затем жидкость проходит через отверстие в поршне 14 и направляется к рабочим тормозным цилиндрам колес автомобиля. Одновременно с этим создается давление на поршень 12 клапана управления усилителя.

В первоначальный момент давление тормозной жидкости одинаково по всей гидравлической магистрали. При дальнейшем возрастании давления поршень клапана управления преодолеет сопротивление пружины и закроет вакуумный клапан 6. В этом время полости I и II разъединяются. При дальнейшем движении поршня открывается атмосферный клапан 7. Атмосферный воздух через воздушный фильтр поступает в полость III гидровакуумного усилителя.

Разность давления в полостях III и IV передается через диафрагму и толкатель на поршень 14 цилиндра усилителя, чем и создается дополнительное давление в гидравлической магистрали.

При снятии нагрузки с тормозной педали давление в гидравлической магистрали между главным цилиндром и клапаном управления падает. Это дает возможность пружине клапана управления за счет усилия ее сжатия поставить в исходное положение поршень клапана управления. При этом закрывается атмосферный клапан 7 и открывается вакуумный клапан 6. В полостях I, II, III, IV устанавливается одинаковый вакуум.

Диафрагма 1 под действием пружины 5, отойдя влево, вместе со штоком вернется в исходное положение. Поршень 14 дойдет до упорной шайбы, при этом откроется клапан 15.

Жидкость, вытесненная при торможении в магистраль, возвращается обратно в главный цилиндр, и тормозная система полностью растормаживается.

Гидравлический и вакуумный усилитель тормозов: в чем разница

Самые распространенные типы усилителей автомобильных тормозов: принцип работы, поломки

Упрощенно говоря, такая вещь, как усилитель тормозов, или, как его называть технически более верно – гидроусилитель тормозного привода, использует гидравлику (гидравлическую жидкость), в то время как вакуумный усилитель тормозов использует вакуум, разряжение, создаваемое обычно вакуумным насосом, для остановки вашего автомобиля.

В вашем автомобиле, какого бы он ни был года выпуска, по умолчанию будет стоять тормозная система – это логично. Она стояла и на самых первых транспортных средствах. Но за 100 с лишним лет в определенные вехи истории развития автостроения этот важнейший элемент безопасности несколько раз подвергался значительным эволюционным изменениям, то есть улучшался.

Однако, несмотря на доработки, основной принцип остается прежним: давление на рычаг так называемой «тормозной педали» от мышц ноги создает давление в тормозной магистрали, благодаря чему колодки прижимаются к тормозным дискам и автомобиль замедляется или останавливается. Но даже в таком знакомом всем элементе есть как минимум один нюанс, который многие путают, а именно разницу в принципе работы между гидравлическим и вакуумным усилителем тормозов.

Читать еще:  Что такое дмвр в двигателе

Так в чем разница между двумя типами усилителей?

По правде говоря, и гидравлический усилитель тормозов, и вакуумный его аналог – это суть одно и то же. Каждый из них использует давление, чтобы помочь водителю в применении гидравлической жидкости в тормозных магистралях и активации тормозной системы по ее прямому назначению без лишних усилий. При этом стоит помнить, что неработающий усилитель тормозного механизма не будет препятствовать нарушению работы тормозной системы и ее эффективности, хотя использовать ее будет не так комфортно и потребуется прикладывать гораздо больше усилий правой ноги.

Тем не менее у людей возникает путаница в тот момент, как только они впервые сталкиваются с двумя этими похожими, но почему-то отличающимися друг от друга системами. Другие автовладельцы, которые с техникой не «на ты», вообще искренне удивляются тому, что систем усилителей существует больше, чем одна.

Чтобы упростить понимание, давайте разберемся, в чем разница в работе вакуумного усилителя тормозов в отличие от его гидравлического аналога. А также дадим подсказки для диагностики потенциальных проблем с каждым из этих типов.

Как работает вакуумный усилитель тормозов?

Принцип действия

Вакуумный усилитель тормозов получает свою мощность через вакуумную систему, соединенную с впускным коллектором двигателя или вакуумным насосом.

Этот тип усилителя наиболее распространенный. Вакуум поступает в усилитель, который подает давление в гидравлические тормозные магистрали при нажатии на педаль тормоза. Вакуум, создаваемый двигателем (или насосом), приводит в действие внутреннюю камеру, разделенную резиновой диафрагмой на две части: вакуумную и атмосферную. В первой давление ниже атмосферного, во второй оно равно ему. При активации тормозов атмосферная камера через следящий клапан соединяется либо с вакуумной в расторможенном состоянии, либо с атмосферной.

Диафрагма с одной стороны соединена со штоком для привода поршня главного цилиндра, а с другой стороны через следящий клапан – с толкателем, идущим от тормозной педали.

При нажатии на педаль система инициирует разряжение в вакуумной полости, за счет чего диафрагма перемещается в сторону разряжения, добавляя усилие на тормозную педаль и облегчая торможение в 2, 3, 4 раза.

Три основных причины отказа вакуумного усилителя тормозов:

Нет вакуумного давления от двигателя (не работает вакуумный насос);

Неспособность усилителя создать вакуум внутри (разгерметизация полостей усилителя);

Поломка деталей системы, таких как обратный клапан и вакуумная магистраль.

Признаки поломки вакуумного усилителя

Тормозная педаль становится более тугой. Ее гораздо сложнее продавить, при этом эффективность торможения будет снижаться при той же силе нажатия на педаль. Это самый явный и первый признак, который говорит о возникших проблемах с усилителем;

Также опытные механики сообщают, что при некоторых поломках в системе усилителя во время нажатия на педаль может слышаться шипение, повышаться, но не всегда, расход топлива.

Алгоритм проверки вакуумного усилителя

Самая простая проверка

Двигатель заглушен. Несколько раз нажимаем на педаль тормоза. Выжав ее до упора и не отпуская, заводим автомобиль. Если в усилителе нормально создается вакуум, то педаль после появления разряжения продавится под усилие ноги еще немного больше.

Второй вариант проверки работы усилителя

Заводим автомобиль на 5 минут на холостых оборотах. Глушим. Нажимаем на тормозную педаль раз. Затем еще раз. Если при втором или третьем нажатии ход педали при том же усилии уменьшается, скорее всего, имеет место проблема с усилителем.

Как работает гидравлический усилитель тормозов?

Система гидравлического усилителя работает почти идентично вакуумной системе, но вместо того чтобы полагаться на разряжение, она использует непосредственно давление гидравлики.

Шток силового цилиндра воздействует на поршень главного тормозного цилиндра. При нажатии педали в распределителе перекрывается доступ к расширительному бачку, открываясь в полость силового цилиндра. Усилия на штоке от педали и от давления жидкости на поршень цилиндра суммируются (в гидроусилителе давление жидкости в системе выше за счет гидроаккумулятора) и передаются на поршень главного тормозного цилиндра, увеличивая усилие.

Усилитель тормозов приводится в действие насосом гидроусилителя руля и обычно выходит из строя одновременно с ГУР. Фактически это обычно первый и единственный индикатор отказа гидроусилителя тормозов. Впрочем, данная технология оборудована аварийной системой, способной поддержать комфортную работу тормозов в течение короткого периода времени в случае разрыва шланга гидроусилителя рулевого управления или обрыва ремня гидроусилителя рулевого управления.

Читать еще:  Что делают гидрокомпенсаторы в двигателе

Единицы измерения производительности и давления вакуумных насосов

При подборе вакуумного насоса наши партнеры часто используют специфические единицы измерения производительности и остаточного давления насосов.

Так кому-то привычней оперировать литрами в секунду, кому-то кубическими метрами в час или минуту. Кто-то привык измерять давление в атмосферах, а кому-то привычней милливольты, Паскали или Бары.

Специалисты «СЛЭМЗ» составили таблицы основных показателей вакуумных насосов АВЗ, водокольцевых насосов ВВН, пластинчато-роторных НВР: производительность и предельное остаточное давление. Также вы найдете таблицу перевода самых популярных единиц измерения давления.

Производительность или быстродействие вакуумного насоса определяет допустимые объемы, в которых может создаваться паспортное разрежение. Неправильно подобранный по производительности агрегат будет перегреваться, разбрызгивать уплотняющую жидкость, заклинивать либо же просто работать неэффективно.

Остаточное давление принято измерять в Паскалях, Барах, миллиметрах ртутного столба и атмосферах. При работе с аналоговыми вакуумметрами используется условная шкала от нуля до «минус единицы»

Основные параметры АВЗ и НВЗ

Глубина вакуумаМодельБыстродействие
ПаскалиБарыkgf/cm 2мм. рт. ст.атмосферым 3 /часм 3 /минл/сл/мин
1,10.0000110.0000110.00830.000011АВЗ-20Д (НВЗ-20)721,2201200
6,70.0000670.0000680,050.000068АВЗ-63Д2273,783633780
6,70.0000670.0000680,050.000068АВЗ-903245,4905400
6,70.0000670.0000680,050.000068АВЗ-125Д4507,51257500
6,70.0000670.0000680,050.000068АВЗ-18064810,818010800

Производительность и остаточное давление ВВН

Единицы измерения вакуумаМодельБыстродействие
ПаскалиБарыkgf/cm 2мм. рт. ст.атмосферым 3 /часм 3 /минл/сл/мин
200000,20,22000,2ВВН1-0,75450,7512,5750
400000,40,413000,41ВВН1-1,5901,5251500
400000,40,413000,41ВВН1-31983,3553300
400000,40,413000,41ВВН1-63726,2103,36198
400000,40,413000,41ВВН1-127201220012000
400000,40,413000,41ВВН1-25150025416,624996
400000,40,413000,41ВВН2-50М300050833,349998

Быстродействие и глубина вакуумных насосов НВР

Давление вакуума вМодельБыстродействие
ПаскалиБарыkgf/cm2мм. рт. статмосферым3/часм3/минл/сл/мин
1,10.0000110.0000110.00830.0000113НВР-1Д (НВР-1,25)4,50,0751,2575
6,70.0000670.0000680,050.0000682НВР-5ДМ19,60,32675,5330
6,70.0000670.0000680,050.000068НВР-16ДМ60116,6996
6,70.0000670.0000680,050.0000682НВР-90Д901,5251500

Таблица перевода единиц измерения вакуума (давления)

Таблица соответствия единиц измерения глубины вакуума помогает быстрее переводить паспортные показатели насосов в привычные Вам единицы измерения: Паскали в Бары, Атмосферы либо кгс/см 2

Теперь вы можете подобрать вакуумный насос под специфику техпроцесса, оперируя производительностью и остаточным давлением в любых единицах измерения.

Если у вас остались вопросы, звоните — менеджеры СЛЭМЗ подробно расскажут об единицах измерения вакуума и помогут с выбором!

Вакуумные датчики и вакуумметры – принципы действия, применение, виды, производители

Вакуумные датчики (также их называют вакуумметрами или вакуумными манометрами) применяются для измерения вакуума и газов в оборудовании соответствующего типа. Впервые изделия этого типа появились, когда было отрыто, что возможно создавать среду, в которой отсутствует кислород. Исходя из этого, появилась необходимость в определении уровня вакуума. Первым изобретателем вакуумметра считается Леонардо Да Винчи, который является создателем пьезометрической трубки. Он использовал ее для измерения показателей давления в водопроводе.

Позже эту идею взяли на вооружение ученые, которые в 1643 году создали вакуумный датчик, который мало в чем изменился за все эти годы.

Датчик вакуума и вакуумметры – устройство

Устройство вакуумного датчика представляет собой две основные части. Первая отвечает за преобразование информации о давлении в сигнал. Это чувствительный измерительный блок или датчик. Вторая часть является преобразователем давления, который оценивает полученный сигнал и пересчитывает данные в более понятные единицы измерения.

Датчик вакуума и вакуумметры – устройство

Информация начинает передаваться на датчик сразу после его установки. Обе части изделия установлены в одном корпусе. Также такие модели называют моноблочными. Изделия могут выводить информацию на жидкокристаллический или работать по более старой схеме, когда уровень давления определяется исходя расположения стрелки.

Вакуумный датчик давления – принцип действия

Принцип действия у разных датчиков примерно одинаковый. Но есть некоторые отличия в зависимости от конкретной модели. Рассмотрим наиболее часто встречающиеся виды вакуумных датчиков, которые используются в промышленности:

Вакуумный датчик Пирани

  • Вакуумный датчик Пирани. Принцип действия этого устройства основан на теплопередаче через разжиженный газ. Чем больше его натиск, тем выше будет отображаемое давление в системе. Передача сигнала осуществляется при помощи тончайшей стальной нити, которая идет к трубке с фланцем, находящимся в условиях комнатной температуры. Находясь в вакуумной среде, нить начинает нагреваться под воздействием тока. Исходя из теплового баланса и производится вычисление давление. Как только нить остывает, показатели опускаются;
  • Вакуумметр Бурдона. Это прибор механического типа, которому не требуется электропитания. Прибор может четко определять показатели давления в пределах от 0,5 до 7500 бар. Принцип работы этого устройства отличается от предыдущего. В этом случае в механизме присутствует кольцо из трубки овального сечения, которое изгибается под определенным углом. Она помещается в специальный желоб и не закрепляется в нем. Благодаря этому при повышении давления этот элемент приходит в движение;
  • Гидростатический U-образной формы. Устройство этого типа определяет давление исходя из давления, которое оказывается на жидкость, которая находится внутри специальной трубки. При этом на разных концах давление будет отличаться. Однако изделия этого типа сегодня редко используются из-за довольно маленького диапазона измерений;
  • Компрессорный. Это более усовершенствованная версия предыдущей модели. Прибор способен определять более высокие показатели давления внутри вакуумной системы;
  • Деформационный механического типа. Данный прибор подходит для определения пониженного давления. В этом случае в качестве датчика используется пружина, которая сжимается и разжимается в зависимости от показателей давления;
  • Мембранный. Это один вариантов наиболее бюджетного механического манометра. На мембрану оказывает влияние давление в системе. Несмотря на свою простоту и низкую стоимость, такие модели подходят для любых газовых смесей;
  • Тепловой. Этот тип приборов также применяется при определении давления в условиях низкого вакуума. Вакуумметры теплового типа пользуются популярностью благодаря точности измерений, простоте использования и доступной цене.

За что отвечает вакуумный датчик и вакуумметр в вакуумной системе

Если говорить о том, за что отвечает вакуумный датчик, то очевидно, что он широко применяется при использовании вакуумного оборудования. Устройство позволяет контролировать и корректировать давление. Это необходимо для полноценной работы систем и более высокого качества производимых работ.

Вакуумметр в вакуумной системе

Выбор прибора зависит от типа оборудования и вида используемого вакуума. Вакуумметры бывают жидкостными, механическими, тепловыми. У каждого из них есть определенные ограничения.

Обслуживание и проверка вакуумного датчика

Как правило, при выходе датчика из строя он не подлежит ремонту, а полностью заменяется. Однако без периодических проверок измерения невозможно точно сказать, когда именно эти компактные изделия выйдут из строя. В современных вакуумметрах есть встроенные системы диагностики, которые выдают ошибку на экране в случае неисправности оборудования. Стрелочные изделия такой способностью не обладают, поэтому они требуют повышенного внимания.

Обслуживание и проверка вакуумного датчика

Производители вакуумметров

При выборе датчика давления в вакуумной системе стоит отдавать предпочтение нескольким производителям:

  • «Мета-Хром». Это отечественная компания, которая занимается созданием вспомогательных устройств для оборудования. На рынке этот производитель довольно давно. С 1995 года «Мета-Хром» зарекомендовала себя, как компанию, которая прочно вошла в индустрию вакуумных установок. Все датчики служат долго, отличаются качеством работы;
  • MKS Instruments, Inc. Этот американский производитель появился еще в 1963 году. Однако измерительные приборы высокой точности начали производиться на заводах этой фирмы только с 1999 года. Тем не менее владельцы промышленных объектов хорошо отзываются о данной продукции;
  • ULVAC Technologies, Inc. Это еще один американский производитель, который известен еще с 1992 года. Компания производит современные цифровые датчики, запорную арматуру и вакуумные насосные установки. Этот производитель также является гарантом качества и оптимальной цены.
0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию