0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что является основой действия двигателя внутреннего сгорания

Реферат: Двигатели внутреннего сгорания

Двигатели внутреннего сгорания

Тепловое расширение

Поршневые двигатели внутреннего сгорания

Классификация ДВС

Основы устройства поршневых ДВС

Принцип работы

Принцип действия четырехтактного карбюраторного двигателя

Принцип действия четырехтактного дизеля

Принцип действия двухтактного двигателя

Рабочий цикл четырехтактного двигателя

Рабочие циклы двухтактных двигателей

ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ РАБОТУ ДВИГАТЕЛЕЙ

Среднее индикаторное давление и индикаторная мощность

Эффективная мощность и средние эффективные давления

Индикаторный КПД и удельный индикаторный расход топлива

Эффективный КПД и удельный эффективный расход топлива

Тепловой баланс двигателя

Значительный рост всех отраслей народного хозяйства требует перемещения большого количества грузов и пассажиров. Высокая маневренность, проходимость и приспособленность для работы в различных условиях делает автомобиль одним из основных средств перевозки грузов и пассажиров.

Важную роль играет автомобильный транспорт в освоении восточных и нечерноземных районов нашей страны. Отсутствие развитой сети железных дорог и ограничение возможностей использования рек для судоходства делают автомобиль главным средством передвижения в этих районах.

Автомобильный транспорт в России обслуживает все отрасли народного хозяйства и занимает одно из ведущих мест в единой транспортной системе страны. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок.

Автомобильный транспорт создан в результате развития новой отрасли народного хозяйства — автомобильной промышленности, которая на современном этапе является одним из основных звеньев отечественного машиностроения.

Начало создания автомобиля было положено более двухсот лет назад (название «автомобиль» происходит от греческого слова autos — «сам» и латинского mobilis — «подвижный»), когда стали изготовлять «самодвижущиеся» повозки. Впервые они появились в России. В 1752 г. русский механик-самоучка крестьянин Л.Шамшуренков создал довольно совершенную для своего времени «самобеглую коляску», приводимого в движение силой двух человек. Позднее русский изобретатель И.П.Кулибин создал «самокатную тележку» с педальным приводом. С появлением паровой машины создание самодвижущихся повозок быстро продвинулось вперед. В 1869-1870 гг. Ж.Кюньо во Франции, а через несколько лет и в Англии были построены паровые автомобили. Широкое распространение автомобиля как транспортного средства начинается с появлением быстроходного двигателя внутреннего сгорания. В 1885 г. Г.Даймлер (Германия) построил мотоцикл с бензиновым двигателем, а в 1886 г. К.Бенц — трехколесную повозку. Примерно в это же время в индустриально развитых странах (Франция, Великобритания, США) создаются автомобили с двигателями внутреннего сгорания.

В конце XIX века в ряде стран возникла автомобильная промышленность. В царской России неоднократно делались попытки организовать собственное машиностроение. В 1908 г. производство автомобилей было организовано на Русско-Балтийском вагоностроительном заводе в Риге. В течение шести лет здесь выпускались автомобили, собранные в основном из импортных частей. Всего завод построил 451 легковой автомобиль и небольшое количество грузовых автомобилей. В 1913 г. автомобильный парк в России составлял около 9000 автомобилей, из них большая часть — зарубежного производства. После Великой Октябрьской социалистической революции практически заново пришлось создавать отечественную автомобильную промышленность. Начало развития российского автомобилестроения относится к 1924 году, когда в Москве на заводе АМО были построены первые грузовые автомобили АМО-Ф-15.

В период 1931-1941 гг. создается крупносерийное и массовое производство автомобилей. В 1931 г. на заводе АМО началось массовое производство грузовых автомобилей. В 1932 г. вошел в строй завод ГАЗ.

В 1940 г. начал производство малолитражных автомобилей Московский завод малолитражных автомобилей. Несколько позже был создан Уральский автомобильный завод. За годы послевоенных пятилеток вступили в строй Кутаисский, Кременчугский, Ульяновский, Минский автомобильные заводы. Начиная с конца 60-х гг., развитие автомобилестроения характеризуется особо быстрыми темпами. В 1971 г. вступил в строй Волжский автомобильный завод им. 50-летия СССР.

За последние годы заводами автомобильной промышленности освоены многие образцы модернизированной и новой автомобильной техники, в том числе для сельского хозяйства, строительства, торговли, нефтегазовой и лесной промышленности.

Двигатели внутреннего сгорания

В настоящее время существует большое количество устройств, использующих тепловое расширение газов. К таким устройствам относится карбюраторный двигатель, дизели, турбореактивные двигатели и т.д.

Тепловые двигатели могут быть разделены на две основные группы:

1. Двигатели с внешним сгоранием — паровые машины, паровые турбины, двигатели Стирлинга и т.д.

2. Двигатели внутреннего сгорания. В качестве энергетических установок автомобилей наибольшее распространение получили двигатели внутреннего сгорания, в которых процесс сгорания

топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. На большинстве современных автомобилей установлены двигатели внутреннего сгорания.

Наиболее экономичными являются поршневые и комбинированные двигатели внутреннего сгорания. Они имеют достаточно большой срок службы, сравнительно небольшие габаритные размеры и массу. Основным недостатком этих двигателей следует считать возвратно-поступательное движение поршня, связанное с наличием кривошатунного механизма, усложняющего конструкцию и ограничивающего возможность повышения частоты вращения, особенно при значительных размерах двигателя.

А теперь немного о первых ДВС. Первый двигатель внутреннего сгорания (ДВС) был создан в 1860 г. французским инженером Этвеном Ленуаром, но эта машина была еще весьма несовершенной.

В 1862 г. французский изобретатель Бо де Роша предложил использовать в двигателе внутреннего сгорания четырехтактный цикл:

3. горение и расширение;

Эта идея была использована немецким изобретателем Н.Отто, построившим в 1878 г. первый четырехтактный двигатель внутреннего сгорания. КПД такого двигателя достигал 22%, что превосходило значения, полученные при использовании двигателей всех предшествующих типов.

Быстрое распространение ДВС в промышленности, на транспорте, в сельском хозяйстве и стационарной энергетике была обусловлена рядом их положительных особенностей.

Осуществление рабочего цикла ДВС в одном цилиндре с малыми потерями и значительным перепадом температур между источником теплоты и холодильником обеспечивает высокую экономичность этих двигателей. Высокая экономичность — одно из положительных качеств ДВС.

Среди ДВС дизель в настоящее время является таким двигателем, который преобразует химическую энергию топлива в механическую работу с наиболее высоким КПД в широком диапазоне изменения мощности. Это качество дизелей особенно важно, если учесть, что запасы нефтяных топлив ограничены.

К положительным особенностям ДВС стоит отнести также то, что они могут быть соединены практически с любым потребителем энергии. Это объясняется широкими возможностями получения соответствующих характеристик изменения мощности и крутящего момента этих двигателей. Рассматриваемые двигатели успешно используются на автомобилях, тракторах, сельскохозяйственных машинах, тепловозах, судах, электростанциях и т.д., т.е. ДВС отличаются хорошей приспособляемостью к потребителю.

Сравнительно невысокая начальная стоимость, компактность и малая масса ДВС позволили широко использовать их на силовых установках, находящих широкое применение и имеющих небольшие размеров моторного отделения.

Установки с ДВС обладают большой автономностью. Даже самолеты с ДВС могут летать десятки часов без пополнения горючего.

Важным положительным качеством ДВС является возможность их быстрого пуска в обычных условиях. Двигатели, работающие при низких температурах, снабжаются специальными устройствами для облегчения и ускорения пуска. После пуска двигатели сравнительно быстро могут принимать полную нагрузку. ДВС обладают значительным тормозным моментом, что очень важно при использовании их на транспортных установках.

Положительным качеством дизелей является способность одного двигателя работать на многих топливах. Так известны конструкции автомобильных многотопливных двигателей, а также судовых двигателей большой мощности, которые работают на различных топливах — от дизельного до котельного мазута.

Но наряду с положительными качествами ДВС обладают рядом недостатков. Среди них ограниченное по сравнению, например с паровыми и газовыми турбинами агрегатная мощность, высокий уровень шума, относительно большая частота вращения коленчатого вала при пуске и невозможность непосредственного соединения его с ведущими колесами потребителя, токсичность выхлопных газов, возвратно-поступательное движение поршня, ограничивающие частоту вращения и являющиеся причиной появления неуравновешенных сил инерции и моментов от них.

Читать еще:  Что такое дизельный турбированный двигатель

Но невозможно было бы создание двигателей внутреннего сгорания, их развития и применения, если бы не эффект теплового расширения. Ведь в процессе теплового расширения нагретые до высокой температуры газы совершают полезную работу. Вследствие быстрого сгорания смеси в цилиндре двигателя внутреннего сгорания, резко повышается давление, под воздействием которого происходит перемещение поршня в цилиндре. А это-то и есть та самая нужная технологическая функция, т.е. силовое воздействие, создание больших давлений, которую выполняет тепловое расширение, и ради которой это явление применяют в различных технологиях и в частности в ДВС.

Билет № 7. Двигатель внутреннего сгорания (ДВС)

Двигатель внутреннего сгорания (ДВС). Объяснение его устройства и действия по модели или таблице. Применение двигателей внутреннего сгорания.

Тепловыми двигателями называют машины, в которых внутренняя энергия топлива превращается в механическую энергию

Двигатель внутреннего сгорания – очень распространённый вид теплового двигателя. Топливо в нем сгорает прямо в цилиндре, внутри самого двигателя. Отсюда и происходит название этого двигателя. Самое широкое применение – в автомобилях.

ДВС работают на жидком топливе (бензин, керосин, нефть) или на горючем газе.

Простейшая модель ДВС.

Двигатель состоит из цилиндра, в котором перемещается поршень 3, соединенный при помощи шатуна 4 с коленчатым валом 5.

В верхней части цилиндра имеется два клапана 1 и 2, которые при работе двигателя автоматически открываются и закрываются в нужные моменты. Через клапан 1 в цилиндр поступает горючая смесь, которая воспламеняется с помощью свечи 6, а через клапан 2 выпускается отработавшиеся газы.

В цилиндре такого двигателя периодически происходит сгорание горючей смеси, состоящей из паров бензина и воздуха. Температура газообразных продуктов сгорания достигает 1600-1800 о С. Давление на поршень при этом резко возрастает. Расширяясь, газы толкают поршень и коленчатый вал, совершая при этом механическую работу.

Рассмотрим схему работы двигателя:

Один рабочий цикл происходит за четыре такта или хода поршня. Поэтому такие двигатели часто называют четырехтактными. Один ход поршня совершается за пол-оборота коленчатого вала.

Первый такт:Поршень двигается вниз. Объем над поршнем увеличивается. В цилиндре создается разрежение. Открывается клапан 1, в цилиндр входит горючая смесь. Цилиндр заполняется горючей смесью, клапан 1 закрывается.

Второй такт:Поршень двигается вверх, сжимает горючую смесь. Сжатая горючая жидкость воспламеняется (от электрической искры) и быстро сгорает.

Третий такт (рабочий ход):Газы давят на поршень и толкают его вниз. Под действием нагретых расширяющихся газов двигатель совершает работу. Движение поршня передается шатуну, а через него коленчатого валу с маховиком.

*Второй и третий такт происходит при закрытых клапанах.

Четвертый такт:в конце 3 такта клапан 2 открывается и через него продукты сгорания выходят в атмосферу. В течение такта поршень движется вверх. В конце такта клапан 2 закрывается.

Мёртвые точки – крайние положения поршня в цилиндре.

Ход поршня – это расстояние, проходимое поршнем от одной мёртвой точки до другой.

Такт-это один ход поршня, равен половине оборота коленвала.

Все о двигателях внутреннего сгорания и особенностях их работы

Двигатель внутреннего сгорания работает на основе расширения газов, которые нагреваются при движении поршня от верхней мертвой точки к нижней мертвой точке. Газы нагреваются от того, что в цилиндре сгорает топливо, которое перемешано с воздухом. Таким образом, температура давления и газа стремительно растет.

Известно, что поршневое давление является аналогичным атмосферному. В цилиндре, наоборот, давление является более высоким. Как раз из-за этого давления поршня понижается, что приводит к расширению газов, таким образом, совершается полезная работа.В соответствующем разделе нашего сайта вы сможете найти статью как повысить эффективность современных двигательных систем. Для выработки механической энергии цилиндр двигателя нужно постоянно снабжать воздухом, в который будет поступать через форсунку топливо и воздух через впускной клапан. Конечно, воздух может поступать вместе с топливом, например, через впускной клапан. Через него же выходят все продукты, получившиеся при сгорании. Все это происходит на основе газораспределения, ведь именно газ отвечает за открытие и закрытие клапанов.

Рабочий цикл двигателя

Нужно особенно выделить рабочий цикл двигателя, который представляет собой последовательные повторяющиеся процессы. Они происходят в каждом цилиндре. Кроме того, именно от них зависит переход тепловой энергии в механическую работу. Стоит отметить, что каждый тип транспорта работает по своему определенному типу. Например, рабочий цикл может совершаться за 2 хода поршня. В этом случае двигатель называют двухтактным. Что касается автомобилей, то большинство из них имеют четырехтактные двигатели, так как их цикл состоит из впуска, сжатия газа, расширения газа, или рабочего хода, и выпуска. Все эти четыре этапа играют большую роль в работе двигателя.

На этом этапе выпускной клапан закрыт, а впускной, наоборот, открыт. На начальном этапе первый полуоборот делается коленчатым валом двигателя, что приводит к перемещению от верхней мертвой точки к нижней мертвой точке. После в цилиндре происходит разряжение, и в него попадает через впускной газопровод воздух вместе с бензином, что представляет собой горючую смесь, которая затем перемешивается с газами. Таким образом, двигатель начинает работать.

После того, как цилиндр полностью заполнился горючей смесью, поршень начинает постепенно перемещаться от верхней мертвой точки к нижней мертвой точке. Клапаны в этот момент еще закрыты. На этом этапе давление и температура рабочей смеси становится выше.

Рабочий ход, или расширение

В то время, как поршень продолжает перемещаться от верхней мертвой точки к нижней мертвой точке, после этапа сжатия электрическая искра воспламеняет рабочую смесь, которая в свою очередь моментально тухнет. Так, температура и давление газов, находящихся в цилиндре сразу повышается. При рабочем ходе совершается полезная работа. На этом этапе происходит открытие выпускного клапана, что приводит к понижению температуры и давления.

На четвертом полуобороте в поршне происходит перемещение от верхней мертвой точки к нижней мертвой точке. Так, через открытый выпускной клапан из цилиндра выходят все продукты сгорания, которые после поступают в атмосферный воздух.

Принцип работы 4-тактного дизеля

Воздух поступает в цилиндр через впускной клапан, который открыт. Что касается движения от верхней мертвой точки к нижней мертвой точке, то оно образуется при помощи разряжения, которое идет вместе с воздухом из воздухоочистителя в цилиндр. На данном этапе давление и температура понижены.

На втором полуобороте впускной и выпускной клапаны являются закрытыми. От НМТ к ВМТ поршень продолжает двигаться и постепенно сжимать воздух, который недавно поступил в полость цилиндра. В соответствующем разделе нашего сайта вы сможете найти статью про чип-тюнинг двигателя ВАЗ 2110. У дизельного варианта двигателя топливо воспламеняет в том случае, когда температура сжатого воздуха выше температуры топлива, которое может самовоспламениться. Дизельное топливо поступает при помощи топливного насоса и проходит форсунку.

Рабочий ход, или расширение

После процесса сжатия топливо начинает смешиваться с нагретым воздухом, таким образом, происходит воспламенение. На третьем полуобороте повышается давление и температура, в результате чего происходит сгорание. Затем после приближения поршня от верхней мертвой точки к нижней мертвой точке давление и температура значительно понижаются.

На данном заключительном этапе происходит выталкивание отработавших газов из цилиндра, которые через открытую выпускную трубу попадают в атмосферу. Температура и давление заметно понижаются. После этого рабочий цикл делает все то же самое.

Читать еще:  Впрыск бензина это какой тип двигателя

Как работает двухтактный двигатель?

Двухтакный двигатель имеет другой принцип работы в отличие от четырехтактного. В этом случае горючая смесь и воздух попадают в цилиндр в начале хода сжатия. Кроме того, отработавшие газы выходят из цилиндра в конце хода расширения. Стоит отметить, что все процессы происходят без движения поршней, как это делается у четырехтактного двигателя. Для двухтактного двигателя характерен процесс, называющийся продувкой. То есть, в этом случае все продукты сгорания удаляются из цилиндра при помощи потока воздуха или горючей смеси. Двигатель такого типа обязательно оснащен продувочным насосом, компрессором.

Двухтактный карбюраторный двигатель с кривошипно-камерной продувкой отличается от предыдущего типа своеобразной работой. Стоит отметить, что двухтактный двигатель не имеет клапанов, так как их в этом плане заменяют поршни. Так, при движении поршень закрывает впуск и выпуск, а также продувочные окна. При помощи продувочных окон цилиндр взаимодействует с картером, или кривошипной камерой, а также впускным и выпускным трубопроводами. Что касается рабочего цикла, то двигателей этого типа выделяют два такта, как можно было догадаться уже из названия.

На этом этапе поршень двигается от нижней мертвой точки к верхней мертвой точке. При этом он частично закрывает продувочное и выпускное окна. Таким образом, в момент закрытия в цилиндре происходит сжатие бензина и воздуха. В этот момент происходит разряжение, которое приводит к поступлению горючей смеси из карбюратора в кривошипную камеру.

На этом этапе электрическая искра, идущая от свечи, воспламеняет сжатую ранее смесь, что приводит к резкому подъему давления и температуры. Стоит отметить, что при движении поршня от ВМТ к НМТ, происходит расширение газов, то есть, совершается полезная работа. Впускное окно закрывается поршнем, а в кривошипной камере сжимается горючая смесь. После приближения поршня к выпускному окну происходит выброс переработанных газов в атмосферный воздух. Давление и температура в цилиндре понижаются. После этого продувочное окно открывается поршнем. Далее сжатая горючая смесь идет по каналу, заполняет цилиндр, а также продувает его от остатков вышедших газов. В соответствующем разделе нашего сайта вы сможете найти статью про правильный выбор регулятора давления топлива.

Что касается работы двухтактного дизельного двигателя, то здесь чуть иной принцип работы. В этом случае в цилиндр сначала попадает не горючая смесь, а воздух. После этого туда слегка распыляется топливо. Если частота вращения вала и размер цилиндра дизельного агрегата одинаковы, то, с одной стороны, мощность такого мотора будет превышать мощность четырехтактного. Однако такой результат не всегда прослеживается. Так, из-за плохого освобождения цилиндра от оставшихся газов и неполного использования поршня мощность двигателя не превышает 65% в лучшем случае.

Эволюция двигателя внутреннего сгорания

Как развивался ДВС: основные даты

Люди производят автомобили уже более века, и почти под каждым капотом стоит двигатель внутреннего сгорания. В течение последних 100 лет принцип его работы оставался неизменным: кислород и топливо поступают в цилиндры мотора, где происходит взрыв (воспламенение), в результате чего внутри силового агрегата образовывается сила, которая и двигает автомобиль вперед. Но с момента первого появления двигателя внутреннего сгорания (ДВС) каждый год инженеры оттачивают его, чтобы сделать быстрее, надежнее, экономичнее, эффективнее.

Благодаря этому сегодня все современные автомобили стали мощнее и экономичнее. Некоторые обычные автомобили сегодня имеют такую мощность, которая еще недавно была только в мощных дорогих суперкарах. Но без огромных прорывов в конструкции ДВС мы бы сегодня до сих пор владели маломощными прожорливыми автомобилями, на которых не уедешь далеко от заправки. К счастью, время от времени подобные прорывные технологии уже не раз открывали новый этап в развитии двигателей внутреннего сгорания. Мы решили вспомнить самые важные даты в эволюции развития ДВС. Вот они.

1955 год: впрыск топлива

До появления системы впрыска процесс попадания топлива в камеру сгорания двигателя был неточным и плохо регулируемым, поскольку топливно-воздушная смесь подавалась с помощью карбюратора, который постоянно нуждался в очистке и периодической сложной механической регулировке. К сожалению, на эффективность работы карбюраторов влияли погодные условия, температура, давление воздуха в атмосфере и даже на какой высоте над уровнем моря находится автомобиль. С появлением же электронного впрыска топлива (инжектора) процесс подачи топлива стал более контролируемым. Также с появлением инжектора владельцы автомобилей избавились от необходимости вручную контролировать процесс прогрева двигателя, регулируя дроссельную заслонку с помощью «подсоса». Для тех, кто не знает, что такое подсос:

Подсос – это ручка управления пусковым устройством карбюратора, с помощью которой на карбюраторных машинах было необходимо регулировать обогащение топлива кислородом. Так, если вы запускаете холодный двигатель, то на карбюраторных машинах необходимо открыть «подсос», обогатив топливо кислородом больше, чем необходимо на прогретом моторе. По мере прогревания двигателя нужно постепенно закрывать ручку регулировки пускового устройства карбюратора, возвращая обогащение топлива кислородом к нормальным значениям.

Сегодня подобная технология, естественно, выглядит допотопно. Но еще совсем недавно большинство автомобилей в мире оснащались карбюраторными системами подачи топлива. И это несмотря на то, что технология впрыска топлива с помощью инжектора пришла в мир в 1955 году, когда инжектор впервые был применен на автомобиле (ранее эта система подачи топлива использовалась в самолетах).

В этом году было проведено испытание инжектора на спорткаре Mercedes-Benz 300SLR, который смог проехать, не сломавшись, почти 1600 км. Это расстояние автомобиль преодолел за 10 часов 7 минут и 48 секунд. Испытание проходило в рамках очередной автогонки «Тысяча миль». Эта машина установила мировой рекорд.

Кстати, Mercedes-Benz 300SLR стал не только самым первым серийным автомобилем с инжекторным впрыском топлива, разработанным компанией Bosch, но и самым быстрым автомобилем в мире в те годы.

Два года спустя компания Chevrolet представила спорткар Corvette с впрыском топлива (система Rochester Ramjet). В итоге этот автомобиль стал быстрее первооткрывателя Mercedes-Benz 300SLR.

Но, несмотря на успех Chevrolet Corvette с уникальной системой впрыска топлива Rochester Ramjet, именно электронные инжекторные системы Bosch (с электронным управлением) начали свое наступление по миру. В результате за короткое время впрыск топлива, разработанный компанией Bosch, начал появляться на многих европейских автомобилях. В 1980-е годы электронные системы впрыска топлива (инжектор) охватили весь мир.

1962 год: турбонаддув

Турбокомпрессор является одним из самых драгоценных камней в двигателях внутреннего сгорания. Дело в том, что турбина, которая подает больше воздуха в цилиндры двигателя, когда-то позволяла

12-цилиндровым истребителям во время Второй мировой войны взлетать выше, лететь быстрее, дальше и меньше расходовать дорогое топливо.

В итоге, как и многие технологии, система турбин из авиатехники пришла в автопромышленность. Так, в 1962 году в мире были представлены первые серийные автомобили с турбокомпрессором. Ими стали BMW 2002, или Saab 99.

После чего компания General Motors попыталась развить дальше эту технологию турбирования двигателей внутреннего сгорания на легковых автомобилях. Так, на автомобиле Oldsmobile Jetfire появилась технология «Turbo Rocket Fluid», которая помимо турбины использовала резервуар с газом и дистиллированную воду для увеличения мощности двигателя. Это была настоящая фантастика. Но затем компания GM отказалась от этой сложной и дорогой, а также опасной технологии. Все дело в том, что уже к концу 1970-х годов такие компании, как MW, Saab и Porsche, заняв первые места во многих мировых автогонках, доказали ценность турбин в автоспорте. Сегодня же турбины пришли на обычные автомобили и в ближайшем будущем отправят обычные атмосферные моторы на пенсию.

Читать еще:  Audi 100 датчик температуры двигателя

1964 год: роторный двигатель

Единственным двигателем, который по-настоящему смог сломать форму обычного двигателя внутреннего сгорания, стал роторный чудо-мотор инженера Феликса Ванкеля. Форма его ДВС ничего общего не имела с привычным нам двигателем. Роторный мотор представляет собой треугольник внутри овала, вращающийся с дьявольской силой. По своей конструкции роторный двигатель легче, менее сложный и более крутой, чем обычный двигатель внутреннего сгорания с поршнями и клапанами.

Первыми роторные двигатели на серийных авто начали использовать компания Mazda и ныне уже не существующий немецкий автопроизводитель NSU.

Самым же первым серийным автомобилем с роторным двигателем Ванкеля стал NSU Spider, который начал выпускаться в 1964 году.

Затем компания Mazda наладила производство своих автомобилей, оснащенных роторным мотором. Но в 2012 году она отказалась от использования роторных двигателей. Последней с роторным мотором стала модель RX-8.

Но недавно, в 2015 году, Mazda на Токийском автосалоне представила концепт-кар RX-Vision-2016, который использует роторный мотор. В итоге в мире начали появляться слухи, что японцы планируют в ближайшие годы возродить роторные автомобили. Предполагается, что в настоящий момент специализированная группа инженеров Mazda где-то в Хиросиме сидит за закрытыми дверями и создает новое поколение роторных моторов, которые должны стать основными двигателями во всех будущих новых моделях Mazda, открыв новую эру возрождения компании.

1981 год: технология дезактивации цилиндров двигателя

Идея проста. Чем меньше цилиндров работает в двигателе, тем меньше расход топлива. Естественно, что двигатель V8 намного прожорливее, чем четырехцилиндровый. Также известно, что при эксплуатации автомобиля большую часть времени люди используют машину в городе. Логично, что если автомобиль оснащен 8- или 6-цилиндровыми моторами, то при поездках в городе все цилиндры в двигателе в принципе не нужны. Но как можно просто превратить 8-цилиндровый мотор в четырехцилиндровый, когда вам не требуется задействовать для мощности все цилиндры? На этот вопрос в 1981 году решила ответить компания Cadillac, которая представила двигатель с системой дезактивации цилиндров 8-6-4. Этот мотор использовал электромагнитные управляемые соленоиды для закрытия клапанов на двух или четырех цилиндрах двигателя.

Эта технология должна была повысить эффективность двигателя, например, при движении по шоссе. Но последующая ненадежность и неуклюжесть этого мотора с системой дезактивации цилиндров напугала всех автопроизводителей, которые в течение 20 лет боялись использовать эту систему в своих моторах.

Но теперь эта система снова начинает завоевывать автомир. Сегодня уже несколько автопроизводителей используют эту систему на своих серийных автомобилях. Причем технология зарекомендовала себя очень и очень хорошо. Самое интересное, что эта система продолжает развиваться. Например, уже скоро эта технология может появиться на четырехцилиндровых и даже на трехцилиндровых моторах. Это фантастика!

2012 год: двигатель с высокой степенью сжатия – воспламенение бензина от сжатия

Наука не стоит на месте. Если бы наука не развивалась, то сегодня мы бы до сих пор жили в Средневековье и верили в колдунов, гадалок и что земля плоская (хотя сегодня все равно есть немало людей, которые верят в подобную чушь).

Не стоит на месте наука и в автопромышленности. Так, в 2012 году в мире появилась очередная прорывная технология, которая, возможно, совсем скоро перевернет весь автомир.

Речь идет о двигателях с высокой степенью сжатия.

Мы знаем, что чем меньше сжимать воздух и топливо внутри двигателя внутреннего сгорания, тем меньше мы получим энергии в тот момент, когда топливная смесь воспламеняется (взрывается). Поэтому автопроизводители всегда старались делать двигатели с немаленькой степенью сжатия.

Но есть проблема: чем выше степень сжатия, тем больше риска самовоспламенения топливной смеси.

Поэтому, как правило, ДВС имеют определенные рамки в степени сжатия, которая на протяжении всей истории автопромышленности была неизменяемой. Да, каждый двигатель имеет свою степень сжатия. Но она не меняется.

В 1970-х годах в мире был распространен неэтилированный бензин, который при сгорании дает огромное количество смога. Чтобы как-то справиться с ужасной экологичностью, автопроизводители начали использовать V8 моторы с низким коэффициентом сжатия. Это позволило снизить риск самовоспламенения топлива низкого качества в двигателях, а также повысить их надежность. Дело в том, что при самовоспламенении топлива двигатель может получить непоправимый урон.

Но затем при массовом появлении электронного впрыска автопроизводители с помощью компьютера стали применять различные настройки, автоматически регулирующие качество топливной смеси, что позволило существенно улучшить экономичность двигателей и снизить уровень вредных веществ в выхлопе. Но главное, что удалось сделать с помощью компьютерных настроек и регулировки топливной смеси, – это снизить до минимума риск самовоспламенения топлива. В итоге со временем стало невыгодно использовать большие мощные моторы с низкой степенью сжатия. Так автопромышленность ввела новую моду – уменьшение количества цилиндров. Чтобы сохранить мощность в моторах, автопроизводители стали использовать турбины. Но главное – благодаря электронике, которая управляет качеством топливной смеси, автопроизводители снова могут создавать моторы с большой степенью сжатия, не опасаясь самовоспламенения топлива.

Но в 2012 году компания Mazda удивила весь мир, представив фантастический мотор SKYACTIV-G, который имеет невероятно высокий коэффициент сжатия для серийного двигателя. Степень сжатия этого мотора составляет 14:1. Это позволяет мотору извлекать энергию почти из каждой капли бензина без образования смога.

Следующим шагом для Mazda стал новый мотор SKYACTIV-X, который использует контролируемое зажигание (система SPCCI). Благодаря этой системе появилась возможность воспламенять бензин практически за счет одного только сжатия. То есть как в дизельных моторах. Также в двигателях SKYACTIV-X есть возможность воспламенять топливо обычным образом. Причем электроника автоматически выбирает, как выгоднее воспламенять бензин в камере сгорания. Все зависит от потребностей водителя и условий движения.

Например, если вам нужна сила (крутящий момент), то двигатель SKYACTIV-X будет воспламенять топливо от силы сжатия (почти как дизель). Если вам нужна мощность, то мотор с высокой степенью сжатия будет воспламенять топливо обычным образом. Причем реально для придания мощности будет использована последняя капля бензина.

Даже спустя столетие и даже с появлением альтернативных видов топлива, а также с появлением электрокаров двигатели внутреннего сгорания остаются главными силовыми агрегатами в автопромышленности. И несмотря на то что многие эксперты считают, что ДВС изжил себя и в скором времени должен исчезнуть из автомира, нам кажется, что двигатель внутреннего сгорания еще не развился до конца. Также мы считаем, что мир в ближайшие 100 лет все равно не будет готов полностью отказаться от ДВС, работающих на бензине.

И кто его знает, что нам подготовят автомобильные компании в ближайшем будущем. Ведь их инженеры не зря получают бутерброды с черной икрой. Вполне возможно, что уже скоро очередной автопроизводитель удивит нас какой-нибудь новой технологией в ДВС.

Так что рано сбрасывать со счетов традиционные моторы. Может быть, электрокары – это временное явление? Скорее всего, это более вероятно.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector