Датчик температуры для контроля двигателя
26. Miсro FAQ по системе охлаждения 2. Датчик ОЖ и датчик приборки.С картинками!
В прошлой теме не хватило место для фото. Решил сделать Miсro FAQ в дополнение к «Mini FAQ по системе охлаждения. С картинками! «.
В этой теме рассмотрим датчик который участвует в системе охлаждения.
ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ — ДТОЖ
Датчик температуры в СУД служит для определения температурного состояния двигателя. По его сигналу ЭБУ при запуске выставляет необходимое количество шагов РХХ, регулирует топливоподачу. Внутри датчика находится термистором с «отрицательным температурным коэффициентом» — при нагреве его сопротивление уменьшается. Высокая температура охлаждающей жидкости вызывает низкое сопротивление (70 Ом + 2% при 130 °С), а низкая температура дает высокое сопротивление (100700 Ом ± 2% при -40 °С). Контроллер подает на датчик температуры охлаждающей жидкости напряжение 5 В через резистор с постоянным сопротивлением, находящимся внутри контроллера. Температуру охлаждающей жидкости контроллер рассчитывает по падению напряжения на датчике, имеющем переменное сопротивление. Падение напряжения большое на холодном двигателе, и низкое — на прогретом. Соответственно, на холодном двигателе напряжение на датчике выше, на горячем — ниже.
«Режим пуска двигателя. При включении зажигания ЭБУ включает реле электробензонасоса, который создает давление в магистрали подачи топлива к топливной рампе.
ЭБУ проверяет сигнал от датчика температуры охлаждающей жидкости и определяет необходимое для пуска количество топлива и воздуха.
Когда коленчатый вал двигателя начинает проворачиваться. ЭБУ формирует фазированный импульс включения форсунок, длительность которого зависит от сигналов датчика температуры охлаждающей жидкости. На холодном двигателе длительность импульса больше (для увеличения количества подаваемого топлива), а на прогретом -меньше.»
Характеристи датчика
При повышении температуры сопротивление датчика уменьшается, см. таблицу:
Температура (°C) Сопротивление датчика (ом)
100 177
90 241
80 332
70 467
60 667
50 973
45 1188
40 1459
35 1802
30 2238
25 2796
20 3520
15 4450
10 5670
5 7280
0 9420
-4 12300
-10 16180
-15 21450
-20 28680
-30 52700
-40 100700
Установлен
Датчик температуры охлаждающей жидкости (на фото 2) установлен между головкой блока и термостатом. Датчик температуры охлаждающей жидкости имеет два контакта ( в отличии от одноконтактного датчика температуры для панели приборов, который стоит рядом, не путайте ).
Температура ОЖ влияет практически на все характеристики управления двигателем. Для нормальной работы двигателя при различных температурах в расчете угла опережения зажигания участвует значение температуры двигателя, значит неисправность датчика влияет на работу системы.
Датчик практически не ломается, но бывает, врёт. Довольно часто перетираются провода у основании разъёма. Основные неисправности — нарушение электрического контакта внутри датчика и нарушение изоляции.
Отказ датчика ведет к трудности запуска горячего мотора, повышенный расход топлива. При отключении ДТОЖ контролеер воспринимает это как обрыв его цепи и принудительно включает вентилятор. Если есть БК, то он при этом покажет температуру ОЖ минус 40 градусов.
Датчик указателя температуры
Фото 4.
Полупроводниковый резистор с отрицательным температурным коэффициентом — сопротивление падает с ростом температуры. Изменение силы тока в датчике вызывает отклонение стрелки указателя в комбинации приборов.
Применяется для контроля температуры охлаждающей жидкости в системе охлаждения двигателя. Показания от этого датчика для визуального контроля на приборной панели.
Называется он ТМ-106. Он одноконтактный.
Установлен в блок двигателя Фото 3.
Данные для проверки датчика указателя температуры охлаждающей жидкости
Датчик температуры охлаждающей жидкости: неисправности, проверка, замена
Датчик температуры охлаждающей жидкости (ДТОЖ) является важнейшим элементом машины, от которого зависит своевременное уведомление водителя о перегреве мотора. Как можно догадаться из его названия, его предназначением является измерение температуры охлаждающей жидкости. Он является частью системы управления двигателем, и от его показаний регулируются различные параметры работы мотора: угол опережения зажигания, процентное соотношение топлива в рабочей смеси, частота вращения коленчатого вала и многие другие.
Устройство датчика температуры охлаждающей жидкости довольно банальное. Он представляет собой термистор, размещенный в корпусе. Термистор является резистором, с отличительной особенностью в том, что его сопротивление понижается с повышением температуры.
Выход из строя датчика температуры охлаждающей жидкости может привести к перегреву двигателя и другим проблемам. Важно следить за его состоянием, а в случае возникновения симптомов неисправности проверить датчик температуры охлаждающей жидкости и при необходимости его заменить на новый.
Что указывает на неисправность датчика температуры охлаждающей жидкости
Проще всего диагностировать наличие проблемы с датчиком температуры охлаждающей жидкости по его внешнему виду. В большинстве случаев он выходит из строя по причине повреждения, которое может быть механическим или коррозионным. Если у датчика треснул корпус, о его стабильной работе можно забыть. При этом выйти из строя может и сам термистор, размещенный в корпусе, и на неисправность датчика температуры охлаждающей жидкости в данном случае будет указывать:
- Контрольная лампа, сигнализирующая водителю о перегреве двигателя;
- Заметное повышение расхода бензина;
- Проблемы с мотором: сложности с пуском, самопроизвольная остановка, нестабильность холостых оборотов и другие неисправности;
- Ошибки на приборной панели, определенные электронным блоком управления (их номера варьируются, в зависимости от модели и производителя машины).
Если имеются симптомы, указывающие на неисправность датчика температуры охлаждающей жидкости, можно сразу произвести его замену. Цена подобного устройства невелика, особенно для распространенных моделей автомобилей. При желании, можно провести его диагностику, чтобы удостовериться в том, что именно датчик является источник возникающих проблем.
Где находится датчик температуры охлаждающей жидкости
Собой ДТОЖ представляет небольшое пластиковое устройство с металлической резьбой. С ее помощью он крепится к выпускному патрубку головки цилиндра, вкручиваясь в него. Датчик должен быть расположен так, чтобы иметь прямой контакт с охлаждающей жидкостью, исходя из чего, можно сделать вывод о его неточных показаниях при ее низком уровне.
Важно: На некоторых моделях автомобилей может быть установлено два датчика температуры охлаждающей жидкости. В таком случае один из них фиксирует температуру на выходе из двигателя, а второй на выходе из радиатора.
Как проверить датчик температуры охлаждающей жидкости
Перед тем как приступить к проверке непосредственно датчика, требуется убедиться, что нет неисправности в проводке автомобиля. Для корректной работы ДТОЖ, на него постоянно должно подаваться напряжение в 5 Вольт. Проверить это довольно просто, необходимо отсоединить от датчика температуры охлаждающей жидкости провода, и проверить с заведенным двигателем выводимое с них напряжение при помощи вольтметра (мультиметра). Если проблемы не обнаружены, и на датчик подается 5 Вольт, можно приступать к диагностике самого термистора.
Чтобы проверить датчик температуры охлаждающей жидкости на правильность определения сопротивления, потребуется: мультиметр, термометр, электрический чайник (или другое устройство, способное постоянно подогревать воду), ключ для демонтажа датчика.
Когда инструменты будут подготовлены, необходимо первым делом снять датчик с автомобиля. Далее можно действовать двумя способами.
Способ 1: Проверка ДТОЖ в электрочайнике
Первый способ диагностики датчика – это проверка его с использованием электрочайника. Для этого необходимо:
- Поместить термометр (желательно электронный, поскольку потребуется замерять высокие температуры) в чайник с прохладной водой;
- Далее подсоединить к датчику мультиметр (в положении для измерения сопротивления);
- Поместить датчик в чайник;
- Замерить показание датчика и записать его;
- Включить чайник и записывать показания сопротивления датчика по достижению ключевых точек нагрева — +10, +15, +20 градусов по Цельсию и так далее;
- Сравнить полученные результаты с таблицей, приведенной ниже.
Если полученные значения сильно отличаются от идеальных, значит, датчик температуры охлаждающей жидкости неисправен, и потребуется его заменить.
Способ 2: Проверка ДТОЖ без термометра
Менее точный, но более простой способ проверки датчика, – это без использования термометра. Суть его заключается в том, что вода при нагревании достигает 100 градусов по Цельсию, и выше ее температура подниматься не может. Соответственно, данную точку можно взять за контрольное значение, и замерить сопротивление датчика при данной температуре.
Поместите датчик температуры охлаждающей жидкости в кипящую воду и замерьте его сопротивление при помощи мультиметра. При температуре в 100 градусов датчик должен показывать значение около 177 Ом. Учитывая погрешность на снижение температуры в процессе кипения (примерно до 95-97 градусов по Цельсию), в момент измерения сопротивление датчика должно находиться на уровне около 210-190 Ом.
ДТОЖ: что это такое
Одним из жизненно важных для работы автомобильного двигателя датчиков, является ДТОЖ, или датчик температуры охлаждающей жидкости. Нормальная работа двигателя без этого датчика практически невозможна. Что такое ДТОЖ, зачем он в автомобиле, как этот датчик устроен и каковы симптомы его отказа, обо всем этом мы и поговорим.
Зачем нужен ДТОЖ на автомобиле?
Датчик температуры охлаждающей жидкости на ВАЗ-2114.
Автомобильная система охлаждения двигателя состоит из двух кругов, по которым циркулирует антифриз или тосол в старых моделях авто, это:
- внутренний круг включающий в себя двигатель и отопитель салона;
- внешний круг включающий радиатор и внутренний круг;
Когда вы только запускаете двигатель, охлаждающая жидкость циркулирует по внутреннему кругу охлаждения двигателя. Но в процессе работы мотора температура неизбежно поднимается, и тогда открываются клапаны, и охлаждающая жидкость попадает в большой радиатор, который является главным элементом системы охлаждения. Обычно это происходит при достижении показателя температуры двигателя 85 – 90 градусов. Вот собственно своевременное открытие большого круга охлаждения мотора и вообще контроль температуры охладительной системы это и есть главная задача ДТОЖ. Собственно в большинстве современных автомобилей, такой датчик бывает не один. Ибо при еще большем повышении температуры мотора на радиаторе включается дополнительный вентилятор, который обеспечивает более интенсивное охлаждение антифриза, а значит и силового агрегата. В подобных случаях, еще один датчик устанавливается в радиаторе для контроля температуры охладительной жидкости, уже здесь. Тем не менее, в некоторых системах для управления вентилятором успешно используются показания датчика, установленного на рубашке двигателя.
Помимо оптимизации работы охлаждения ДТОЖ также участвует в регулировке подачи топливной смеси и управлении зажиганием. Так например, когда двигатель холодный в него подается топливная смесь, содержание воздуха в которой, повышено.
Как работает датчик температуры охлаждающей жидкости
Датчик температуры охлаждающей жидкости реализован достаточно просто. Это по сути своей, термистор – транзистор в котором сопротивление изменяется при изменении температуры. Выделяют два типа таких термисторов:
- с отрицательным коэффициентом;
- с положительным коэффициентом;
В датчиках с отрицательным коэффициентом при повышении температуры сопротивление падает, а в датчиках с положительным коэффициентом, соответственно повышается. Наиболее распространенными являются температурные датчики с отрицательным коэффициентом.
Показания ДТОЖ могут выводиться на приборную панель или дисплей автомобильного компьютера, а могут учитываться только бортовой электроникой. Точность работы датчика температуры охлаждающей жидкости может зависеть от типа антифриза, который заливается в систему охлаждения. Поэтому, используйте антифриз, соответствующий времени года и желательно, рекомендованный производителем авто.
Читайте также: Что такое РХХ и зачем он нужен на автомобиле.
Исследуем датчик температуры охлаждающей жидкости
Содержание
- 1 Основные функции датчика температуры охлаждающей жидкости.
- 2 Как устроен датчик температуры охлаждающей жидкости?
- 3 Как проверить датчик температуры охлаждающей жидкости своими руками?
В современном автомобилестроение применяется все больше датчиков и анализаторов, для автономного поддержания работоспособности автомобиля. Сегодня, датчики являются важной частью транспортного средства, которая контролирует состояние важнейших автомобильных систем. Одним из наиболее важных, является датчик контроля за температурой жидкости в охладительной системе. Датчик температуры охлаждающей жидкости находиться в отсеке двигателя автомобиля и выполняет важную функцию, передачу термических показателей рабочей смеси электронному блоку правления. Несмотря на то что функция анализатора крайне важна для правильной работы важнейшей системы транспортного средства, датчик имеет достаточно простое устройство.
Помимо контроля за температурой охлаждающей жидкости, анализатор имеет важное значение для работы многих систем транспортного средства. Анализируя показания датчика охлаждающей жидкости, блок управления контролирует работу топливной системы, устройств питания и других важнейших компонентов автомобиля. Неисправный датчик температуры охлаждающей жидкости, способствует неправильным действиям электронного блока, что может привести к достаточно неприятным последствиям. В связи с этим необходимо поддерживать работу анализатора на должном уровне и своевременно проверять его функциональность. Столкнувшись с неисправностью рассматриваемого устройства, некоторые автолюбители путают его с датчиком указателя охладительной смеси. Дело в том, что указатель температуры отвечает только за трансляцию показаний на приборную панель, в то время как датчик температуры охлаждающей жидкости взаимодействует с электронным блоком управления. После того как блок управления получает информацию о повышенной температуре рабочей смеси, он принимает соответствующие меры для нормализации работы системы. Температура охлаждающей жидкости, может регулироваться при помощи специального вентилятора.
Основные функции датчика температуры охлаждающей жидкости.
Благодаря функции анализатора охлаждающей жидкости, электронная система управления выполняет следующие функции:
— Установка правильного угла зажигания. Получая сигнал анализатора, система корректирует запаздывание и опережение зажигания. Корректно выставленное зажигание, в значительной мере снижает показатель отработанных газов и способствует меньшему потреблению топливной смеси. Помимо этого, правильный угол зажигания благоприятно влияет на продуктивность работы двигателя автомобиля.
— Насыщение топливной смеси на транспортных средствах с системой впрыска. После того как блок получает информацию от анализатора о низкой температуре движка, он продлевает воздействие на форсунки. Таким образом, настраивается работа мотора на холостом ходу и обеспечивается отсутствие посторонних колебаний при нагреве двигательной системы. В случае если блок получает сигнал о перегреве, насыщенность рабочей смеси снижается до необходимого уровня для поддержания должного расхода топливной смеси и снижения уровня выхлопных газов. Если функция анализатора нарушена, электронный блок управления не имеет возможности контролировать состояние рабочих систем автомобиля. В таком случае происходит неправильное обогащение смеси и сбивается правильная работа важнейшей системы транспортного средства.
— Определение и корректировка характеристик горючего состава при закрытом или свободном контуре. В случае неправильной работы устройства, блок никак не отвечает на информацию кислородного анализатора и его работа нарушается в большей мере.
Помимо этого, термический анализатор имеет важную роль для функционирования коленчатого вала, вентиляции фильтра и настройки холостого хода автомобиля. Еще одной важной функцией устройства, является отключение гидравлического трансформатора коробки передач в случае перегрева.
Как устроен датчик температуры охлаждающей жидкости?
До недавнего времени в автомобилестроении широко применялись механические анализаторы, представляющие собой простое термическое реле. Такое устройство, имело несколько меньше функций чем его современный аналог. Механический датчик, поддерживал термические показатели при закрытом контакте и насыщал рабочую смесь при открытым контакте.
Современное устройство имеет гораздо более широкий набор функций и соответственно более сложную структуру. Несмотря на это, современные датчики достаточно просты в эксплуатации, не требуют излишнего внимания и редко приходят в неисправность. Надежный принцип функционирования, позволяет поддерживать правильную работу автомобиля долгие годы.
Настоящие датчики, представляют собой особые термические резисторы, которые в максимально короткий временной период способны изменить сопротивление при возрастании или понижении температуры. Как правило, современные анализаторы производят из специального сплава никеля и кобальта, а также других материалов, обладающих хорошей проводимостью. При изменении температуры, в резисторе изменяется количество свободных электронов. Таким образом, изменяется сопротивление анализатора.
Само устройство расположено в защитном корпусе, обладающим специальным разъемом соединения и крепежом. Температурные показатели устройства являются отрицательными, и датчик увеличивает свое сопротивление в случае пониженной температуры двигателя. При нагреве двигателя, сопротивление уменьшается и соответственно изменяется напряжение анализатора. Реагируя на изменения в датчике, электронный блок управление производит контроль состояние двигательной системы, изменяя температуру охлаждающей жидкости.
В последнее время, процесс анализа температуры постоянно усложняется. На большинстве современных автомобилей, установлен дополнительный датчик для контроля за термическим состояние мотора. Благодаря такой системе, контроль за состоянием двигателя становится более надежным и продуктивным. Установка дополнительного датчика, позволяет электронному блоку более точно следить за состоянием важнейшей системы транспортного средства.
Как проверить датчик температуры охлаждающей жидкости своими руками?
Несмотря на надежность современных устройств, как и любой компонент автомобиля датчик имеет свойство приходить в неисправность. Даже незначительные перебои в работе датчика могут приводить к неблагоприятным последствиям. Поэтому возникает необходимость поддерживать работу анализатора на должном уровне. Значительно поврежденный датчик не подлежит восстановлению, а требует обязательной замены. Но перед этим, необходимо в обязательном порядке выявить причины неисправности. Для продуктивной проверки датчика, требуется наличие соответствующего оборудования. Диагностическое устройство способно определить код ошибки, тем самым вывив характер и причину неисправности. Поэтому для проверки датчика потребуется обратиться в специализированный сервис. После получения номера неисправности, можно продолжить работу самостоятельно.
Если сброс ошибки не принес необходимого результата, требуется заменить неисправный датчик. Для этого, необходимо найти оригинальное устройство завода изготовителя. Использование аналогов, как правило, не приносит должного результата. При этом могут возникнуть сложности при его установке. Поэтому крайне не рекомендуется использовать иные анализаторы.
Диагностику неисправного устройства можно провести самостоятельно путем визуального осмотра. В ходе такого обследования можно выявить характерные неисправности, такие как: утечку охладительной смеси, нарушение структуры анализатора путем механического воздействия, образование коррозии на держателях.
Конечно, такие неполадки не требуют замены самого датчика, но в значительной мере могут повлиять на работоспособность устройства. После визуального осмотра, необходимо провести анализ напряжения и сопротивления элемента. Для этого, необходимо воспользоваться электроизмерительным прибором. Полученные значения, сравниваются с указанными в комплектующей инструкции.
Полная проверка элемента, поможет успешно выявить причины неисправности, и принять меры к их устранению.
Как правило, причинами утраты функции датчика являются:
- Неправильная работа вентилятора охлаждение или нарушение функции термостата.
- Нарушение герметичности проводников.
- Потеря напряжения.
Определить причину неисправности можно только после проведения качественной диагностики. Замена устройства производится только при достаточном сливе охлаждающей жидкости. При смене, датчик должен находиться выше уровня рабочей смеси.
Виды датчиков температуры и принцип их работы
Датчики измерения температуры используются для контроля веществ в твердом, жидком или газообразном состоянии. В зависимости от целей применения, схема строения прибора будет видоизменяться. Но чтобы выбрать подходящий инструмент необходимо обращать внимание на одни и те же нюансы.
Виды, конструкция и принципы действия
Термопара
Датчик включает в себя две проволоки из разных металлов, спаянных между собой. Для отношения концов друг с другом в зоне постоянной температуры, в конструкцию добавляют удлиняющие провода из двух металлов. Когда на концы проводов действуют разные температуры (например, при помещении датчика в горячую воду), то в цепи появляется электрический ток. Сила возникшего тока (от 40 до 60 мкВ) зависит от используемого материала термопары, который влияет на термоэлектрическую силу прибора.
В практике можно встретить железоникелевые, хромоалюминиевые, медно-константановые и так далее. В дешевых моделях используются неблагородные металлы (аналогичных термоэлектродам) для удлиняющих проводов, а в дорогих – благородные металлы, которые способы развивать аналогичную термо-ЭДС, что и электроды (необходимо для уменьшения стоимости высококлассным приборов).
Термопара относится к датчикам с высокой точностью. Проблемой устройства является сложность получения замеренного значения. Термопара действует по принципу относительности отличия температур между разъемами. Горячий спай помещается в замеряемое вещество, а холодный остается находиться в окружающей среде.
При необходимости использования термопары работа проводится следующим образом. Температуру холодного спая необходимо компенсировать, для чего вторую термопару помещают в среду с известным показателем.
Если используется программный способ компенсации, второй датчик помещается в изометрическую камеру, где находятся холодные спаи, что позволяет контролировать температуру с высокой точностью. Самое сложное в работе с одноконтактной термопарой – снять показатели.
В ГОСТе прописаны коэффициенты, необходимые для перевода ЭДС в показатель температуры и наоборот. Подсчет также может вестись при помощи контроллера.
Но получаемый от термопары показатель ЭДС измеряется в единицах и сотнях микровольт. Поэтому использование аналоговых преобразователей не будет успешным. Для сборки специальной конструкции, цель которой – получение точных результатов, потребуются малошумящие аналоговые преобразователи.
На практике для устранения имеющихся погрешностей используют автоматическое введение поправки на температуру свободных концов. Под этим подразумевают введение моста с плечами в виде медного и манганинового терморезисторов.
Терморезисторы
Терморезисторы делятся по типу зависимости сопротивления от температуры. Они могут быть отрицательными (NTC) или положительными (PTC).
Измерения легче проводить при помощи терморезисторов. Принцип работы построен на сопротивлении материалов внешней температуре. Высокая точность присуща для приборов, изготовленных из платины. На работу терморезисторов влияют две характеристики.
Первая – базовое сопротивление, второе – температура, при которой оно определяется. ГОСТ устанавливает, что определение должно проходить при 0 градусов по Цельсию. В нормативном документе указывается, что рекомендуется использовать несколько номиналов сопротивлений, определяемых в Омах, а также температуры, что позволит сопоставить результаты при 0°С и другом показателе. Для этого используется следующая формула:
Температурный коэффициент будет изменяться в зависимости от используемого материала для термометров, что отражено в ГОСТе. В нормативном документе также указываются коэффициенты полинома, необходимые для расчета в зависимости от текущего сопротивления.
Термометры сопротивления обладают одним минусом – низкий температурный коэффициент сопротивления. Несмотря на этот нюанс, использование терморезисторов проще по сравнению с принципом работы термопары.
Способы измерения будут зависеть от комплектации модели. Базовые терморезисторы необходимо включать в цепь с источником тока и контролируемого дифференциального напряжения. Чтобы корректно определить доли единицы процента получаемых от температурного коэффициента проводников, лучше использовать аналого-цифровые преобразователи.
Если в датчик уже встроен аналоговый выход, соответствующий питаемому напряжению, то для оцифровывания можно напрямую подключать терморезистор к преобразователю
Комбинированные
Комбинированные датчики включают в себя несколько полупроводников, объединенных в единое устройство. Датчики могут иметь встроенный цифровой интерфейс, а не только интегральные схемы с выходом. Часто используется комбинированный датчик благодаря возможности подключения параллельных устройств. Погрешность при расчете температуры равна 2 °С, а при определении влажности – 5%. Проблема в таком датчике одна – оптимизация интерфейса.
Цифровые
В цифровых датчиках устанавливается трехвыводная микросхема. Показатели считываются с нескольких параллельно работающих датчиков, что позволяет получить показания с точностью 0,5 °С. Работа электронного термометра возможна от -55 до +125 °С. Единственным минусом устройства является скорость получения результатов – 750 секунд для получения максимально точного показателя. Определение точности прибора осуществляется при помощи соответствующих регулировок, которые необходимы для уменьшения количества затрачиваемого времени на получение результата. Опрос датчика не имеет смысла, так как корпус является инерционным.
Бесконтактные
Работа датчика основана на нагревании тонкой пленки, что осуществляется благодаря воздействию инфракрасных лучей. Встретить подобную технологию можно в пирометрических устройствах. В отличии от контактного, получить данные можно на расстоянии.
Кварцевые преобразователи температуры
Если диапазон изменяемых температур превышает стандартные значения и достигает отметки от -80 до +250°С, то используются кварцевые преобразователи. Такие устройства работают на принципе взаимодействия кварца и температуры, отражаемого частотной зависимостью. Преобразователь имеет несколько функций, которые меняются в зависимости от расположения среза по осям кристалла.
Кварцевые датчики отличаются высокой точностью, стабильностью и разрешением. Являются более перспективными способами измерения температуры. Часто можно встретить в цифровых термометрах.
Шумовые
Шумовой датчик служит для получения показателей по принципу разности потенциалов на резисторе, которые меняются в зависимости от температуры. На практике подобный способ измерения имеет условие – одна из температур должна быть известна, а вторая — измеряемая. Два полученных шума от различных температур сравнивают и находят искомое значение.
Работа датчика возможна от -270 до +1100 °С. Из преимуществ отмечается возможность измерения температур в термодинамике. Но минусом является сложность реализации такого способа измерения напряжения шумом из-за наличия различий с шумом усилителя.
Ядерного квадрупольного резонанса
Принцип работы биметаллического термометра основывается на действии градиента поля тока решетки кристалла и момента ядра, вызванного отклонением заряда от симметрии сферы. При помощи такого процесса создается процессия ядер. Частота напрямую зависит от градиента поля решетки. В зависимости от вещества, величина показателя может подниматься до нескольких тысяч МГц. Чем выше температура, тем меньше частота ЯКР.
ЯКР образует ампулу с веществом, которая помещается в обмотку индуктивности для дальнейшего соединения с контуром генератора. Если частота генератора и частота ЯКР совпадают, то исходящая от генератора энергия поглощается. При измерении вещества с температурой -263°С погрешность составляет 0,02 градуса, а при температуре 27°С, погрешность равна 0,002 градуса. Из преимуществ датчика выделяют неизменную стабильность. Минусом является значительная нелинейность преобразующей функции.
Объемные преобразователи
Принцип работы иного рода биметаллического термометра построен на свойстве веществ расширяться и сжиматься в зависимости от действующей температуры. Диапазон действия преобразователя определяется в зависимости от стабильности материала. Датчик может использоваться при температурах от -60 до +400°С. Погрешность составит от 1 до 5%.
При определении температуры датчиками на жидкости погрешность падает до 1-3% в зависимости от температурной среды. Температура закипания и замерзания жидкости также будет влиять на интервал работы датчика.
Если датчик измеряет преобразователи на газе, то граница измерения зависит от точки перехода газа в жидкое состояние и стойкостью баллона в воздействующей температуре.
Канальный
Все цифровые термометры относятся к канальным, так как для передачи сигналов они используют каналы. В зависимости от количества таких “магистралей” определяется канальность устройства. Так термометр Testo 925 относится к 1-канальным, в основе работы лежит термопара, как и у термометра Testo 735-2 – 3-канального. А Testo 810 – 2-канальный прибор с инфракрасным термометром.
Параметры выбора
Чтобы осуществить корректный выбор подходящего термометра, необходимо определить несколько условий, которые должны соответствовать для комфортной работы прибором.
Диапазон рабочей температуры
Необходимо знать, в каких температурах будет задействован термометр. Также нужно определить, какая погрешность будет приемлемой при получении результатов. Если диапазон температур небольшой, то подойдут термисторы. В самых суровых условиях работоспособны преимущественно шумовые приборы.
Условия проведения замеров
Возможно ли поместить термометр в среду или материал, который нужно заменить. Если нет, то получить данные можно при помощи радиационных термометров, которые замеряют температуру сквозь препятствия.
Время работы до калибровки или замены
Установить условия работы датчика. Окружающая обстановка может быть стандартной, с высокой влажность, окислительной, пожароопасной и так далее.
Величина сигнала выхода
Сигнал выхода должен соответствовать возможностям электроизмерительных приборов для дальнейшей обработки получаемых данных. Зависит это от полученных показателей температуры, преобразуемых в энергию.
Другие технические данные
Также при определении подходящего типа датчика температуры необходимо обращать внимание на второстепенные факторы. Эти нюансы позволяют выбрать самый подходящий аппарат для получения необходимых данных.
Погрешность
Для получения самых точных результатов потребуется большое количество времени. Лучший показатель выдает биметаллический термометр, построенный по принципу ЯКР и цифровые. Первые – быстрее, а вторые – точнее.
Разрешение
Этот показатель позволяет получить от датчика более точные приращениям дискретности измерения температуры. Ярким представителем является DS18B20, который может работать в разрешении 9,10,11 и 12 бит. Самый малый режим даст 0.5°C, а максимальный — 0.0625°C.
Напряжение
На величину выходного напряжения будет влиять сопротивление резистора. В зависимости от этого напряжение может быть линейным (изменяться в зависимости от температуры) и нелинейным. Для каждого датчика существуют свои эталонные величины на выводах термометра, который зависит от температуры измеряемого объекта.
Время сработки
Показатель отвечает за скорость получения результатов замера. Как правило, быстрые замеры можно получить, имея крупную погрешность. Для устранения этого недостатка потребуется пренебречь временем сработки и увеличить его до необходимого показателя точности.
Промышленные термодатчики и сенсоры
Кроме стандартных бытовых термодатчиков бывают промышленные, которые используются исключительно на специальных объектах. Их распространение направлено на определенную группу лиц из-за избыточных возможностей, которые требуются только на производстве. Некоторые из них способны работать в различных нетрадиционных средах и суровых условиях. Выбор подходящих типов осуществляется тем же образом, что и для подбора бытовых датчиков.
Применение
Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.
Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами. При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения.