0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическая схема асинхронного двигателя с полным пояснением

Схема подключения электродвигателя к сети 220 вольт

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

  • Принцип действия
  • Двухфазный синхронный электродвигатель
  • Трехфазный синхронный двигатель
  • Трехфазный асинхронный двигатель
  • Однофазный асинхронный электродвигатель
  • Схема включения
  • Подсоединение к однофазной сети
  • Подключение на 220 вольт
  • Как включить однофазный асинхронный двигатель

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

Читать еще:  Что то цокотит в двигателе на приоре

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Способы пуска асинхронных двигателей

Асинхронный двигатель с короткозамкнутым ротором – это разновидность движков, в котором ротор сделан с особым типом обмотки, похожей на беличью клетку. Чтобы его запустить, необходимо знать базовые основы схемотехники, о которых и пойдет речь ниже.

Способы подключения асинхроника

Перед тем, как подключить электродвигатель с асинхронным якорем, необходимо изучить «матчасть», без которой попытка запуска может привести к порче внутренних обмоток.

Промышленные сети

Асинхронный двигатель с короткозамкнутым ротором зачастую питается от промышленной трехфазной сети. В отличие от бытовой однофазной, здесь токи передаются сразу по 3 проводникам, причем происходит смещение на 120о, при этом амплитудные колебания одинаковы на синусоидальном графике.

Для примера, в однофазной сети график выглядит следующим образом.

Соединение звездой и треугольником

Асинхронный двигатель с короткозамкнутым фазным ротором подключается методом «звезда» или «треугольник». Соединение может происходить:

  1. В корпусе. Тогда на поверхности расположено 3 проводка.
  2. Снаружи корпуса. В этом случае обмотки между собой никак не соединены. Снаружи расположено 6 проводов, которые соединяются шиной.

Стоит обратить внимание, что оба типа подключения рассчитываются одинаково. Но один и тот же асинхронный электродвигатель, соединенный с одной сетью, но разными подключениями, будет иметь разные показатели мощности.

Перед тем, как подключить электродвигатель изучите инструкцию на корпусе. Зачастую там указывается рекомендуемое подключение. Также обязательно есть строчка о максимальной потребляемой мощности на пике работы.

На примере с фотографии видно, необходимая схема подключения электродвигателя – «звезда» и максимальная мощность составляет 1 кВт.

Что означают провода на стартере

Ниже представлены обозначения выводов стартера асинхронного двигателя с короткозамкнутым ротором.

Соединение с фазосдвигающим компонентом

Как было сказано, в трехфазных сетях фазы сдвинуты относительно друг друга на 120о. В бытовых розетках это не встречается, поэтому необходимо произвести смещение искусственно.

Для пуска асинхронного двигателя с короткозамкнутым ротором используются фазосдвигающие элементы. Движок при этом может работать в однофазном темпе, либо в конденсатором. Посмотреть подключение можно на схемах ниже.

Схемы а. б и д используются в случае, если на корпус выведено всего 3 провода, т.е. соединение произведено внутри. В одном случае асинхроник будет работать в однофазном режиме, а мощность упадет на половину.

При конденсатором подключении, как на схемах подключения трехфазного двигателя В, Д и Е, мощность упадет только на 25-20%.

Расчет емкости конденсатора рассчитывается по следующим формулам. 1, 2, 3

  1. Iном – это фазный ток, при подключении к промышленной сети 380В.
  2. U1 – это напряжение в бытовой сети, т.е. 220В.

Способы управления асинхрониками

Устройство асинхронного двигателя допускает 2 вида подключения:

  • прямое от сети;
  • через устройство плавного пуска электродвигателя.

Прямое подключение к сети питания

В этом используется способы пуска асинхронного через магнитный пускатель. В этом случае возможен относительно безопасный запуск и плавная работа. Дополнительно рекомендуется установить реле контроля тепла, который защитит движок, если поступаемый ток превысит номинальные границы.

Существуют схемы с реверсом и без него.

Схемы с реверсом

Пояснение принципа действия асинхронного двигателя с нереверсивной схемой подключения:

  1. L. Контактные площадки для подключения к сети.
  2. QF 1. Выключатель-автомат.
  3. SB 1. Аварийная остановка.
  4. SB 2. Пауза.
  5. КМ 1. Магнитный пускатель.
  6. КК 1 . Реле теплового контроля.
  7. HL 1. Контрольная лампочка.
  8. М. Сам двигатель.
Реверсивная схема

Схема реверсивного пускателя:

  1. L. Контактные площадки для подключения к сети.
  2. QF 1. Выключатель-автомат.
  3. КМ. Магнитный пускатель.
  4. КК 1. Реле теплового контроля.
  5. М. Двигатель.
  6. SB 1. Остановка.
  7. SB 2. Движение «Вперед».
  8. SB 3. Реверс.
  9. HL. Контрольные лампочки.

Настройка плавного пуска

Устройство плавного пуска электродвигателя (УПП) позволяет защитить устройство от внезапных скачков фазного тока в момент включения. Оно обеспечивает относительно медленный пуск стартера, что сохраняет внутренние блоки движка от внезапных повреждений.

Самостоятельно изготавливать УПП не стоит – можно приобрести готовые устройства. Главное — найти устройство, соответствующее механическим характеристикам асинхронного трехфазного двигателя.

Также обращайте внимание на маркировку УПП. Они бывают амплитудными и фазными. Для асинхроников требуются вторые, т.е. первые подходят только для слабонагруженного оборудования.

Как подключить электродвигатель?

Человек окружен электродвигателями. Их устанавливают в стиральные машины, настенные часы, автомобили, электроинструменты, и даже в игрушечные машинки. Они популярны в силу своей неприхотливости и прочности.

Читать еще:  Вертолет ми 8 обороты двигателя

Как же подключить электродвигатель? Для работы обычного асинхронного двигателя достаточно двух проводов – фазы и нуля. Однако подключение усложняется, если речь идет о трехфазном варианте. Чтобы разобраться в тонкостях подключений, необходимо понимать базовые принципы электрики.

Почему применяют запуск однофазного двигателя через конденсатор?

Однофазный асинхронный двигатель – это электромотор, запитанный от сети переменного тока. Он состоит из нескольких компонентов:

  • корпуса двигателя;
  • ротора;
  • статор.
  • проводов электропитания.

В корпусе устройства располагается статор. Он состоит из рабочей и пусковой обмотки. На них подается электрический ток, который вызывает электромагнитное поле. Действие токов раскручивает ротор, установленный посередине статора. При этом необходимо учитывать, что запуск двигателя происходит принудительно. На рабочую обмотку подают ток, при этом пусковую обмотку запускают в ручном режиме, через кнопку.

Такая схема позволяет включить двигатель без дополнительных компонентов, но данная компоновка может привести к поломке двигателя. Дело в том, что сама по себе рабочая обмотка не раскручивает мотор. Она создает пульсирующее магнитное поле, силы которой не хватает на первоначальную раскрутку ротора. Рабочий контур будет ждать подключения пусковой обмотки. Она дает толчок ротору, позволяет подключиться к работе основной обмотке.

В противном случае рабочая обмотка будет находиться под постоянным напряжением. Из-за высокого сопротивления она начинает греться и постепенно приходит в негодность. Для исправления данной ситуации используют конденсаторы. Они делают старт двигателя безопасным, сохраняет ресурс обмоток.

ВНИМАНИЕ: Для определения типа обмотки используют мультиметр. С его помощью определяют сопротивление на выходах проводов из асинхронного двигателя. Прибор показывает меньшее сопротивление на рабочем контуре, большее на пусковой обмотке.

Подключение конденсаторов для запуска однофазных электродвигателей

Конденсатор – это компонент электрической цепи, накапливающий в себе заряд электрического тока. Данный элемент может снижать или повышать нагрузку на компоненты электроприборов. В системе переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения. Емкость элемента измеряют в фарадах (Ф) или микрофарадах (мкФ).

Конструктивно данный элемент представляет собой две пластины или обкладки, посредине которых находится диэлектрик, толщина которого намного меньше размеров обкладок. Конденсатор позволяет накапливать больший или меньший ток, необходимый для корректной работы элементов электрической цепи.

Различают три вида конденсаторов:

  1. Полярные. Не используются в сетях переменного тока из-за быстрого разрушения прослойки диэлектрика. Это приводит к короткому замыканию цепи.
  2. Неполярные. Работают в сетях переменного и постоянного тока. Их обкладки одинаково взаимодействуют с источником и диэлектриком.
  3. Электролитические или оксидные. В этом конденсаторе используют тонкую оксидную пленку в качестве электродов. Это позволяет работать с максимально возможной емкостью конденсатора. Используют на моторах с низкой частотой вращения.

Из этого следует, что для подключения к асинхронному однофазному двигателю более всего подходит неполярный конденсатор.

Для асинхронного двигателя используют конденсаторы:

  • рабочие;
  • пусковые (стартовые).

Первая группа элементов направлена на снижения тока на основной контур обмотки мотора. Она бережет статор от перенапряжения. Стартовые конденсаторы работают кратковременно – до 3 секунд. Они включаются в самом начале работы двигателя.

Подключение конденсатора и разных контуров обмотки может проходить в различной последовательности. Это влияет на производительность мотора и его эксплуатационные характеристики.

ВАЖНО. Для корректной работы конденсатора нужно правильно рассчитать объем данного компонента. В электрике существует правило: на 100 Ватт мощности берут примерно 7 мкФ емкости рабочего конденсатора. Для пускового элемента данный параметр увеличивается в 2.5 раза. На практике данные показатели могут незначительно отличаться. Это происходит из-за конструктивных особенностей разных двигателей, а также общей выработки устройства.

Какой вариант подключения двигателя лучше всего?

Рассмотрим схему подключения данного элемента в цепи асинхронного двигателя. Конденсаторы устанавливают в разрыв питания на выходах основной и пусковой обмотки.

Их можно комбинировать следующим образом:

  1. Установка пускового конденсатора, включающегося на короткий промежуток времени для снятия нагрузки на основную обмотку. При этом емкость элемента рассчитывают исходя из пропорции: на 1 кВт мощности мотора – конденсатор 70 мкФ.
  2. Установка рабочего конденсатора в контур основной обмотки. В этом случае пусковая обмотка подключена напрямую и работает постоянно. Для такой схемы работы выбирают конденсатор, мощностью в пределах 23-35 мкФ.
  3. Пусковой и рабочий конденсатор устанавливаются параллельно.

Эти схемы рассчитаны на подключение асинхронного двигателя на 220в. Данные пропорции носят рекомендательный характер и подбираются индивидуально для каждого типа мотора. Для подбора оптимальной комбинации стоит внимательно следить за работой агрегата.

Например, если мотор начинает сильно перегреваться после установки рабочего конденсатора, стоит понизить его мощность в два раза. Рекомендуется устанавливать конденсаторы с рабочим напряжением не менее 450В.

Зная, как подключается однофазный асинхронный двигатель в сеть 220В, можно подключить любой подобный агрегат без особых опасений. Главное четко представлять схему подключения и иметь под рукой хотя бы один пусковой конденсатор.

Однако для серьезных рабочих станков такой вариант неуместен. Дело в том, что на мощном электроинструменте ставят трехфазные двигатели, которые не получится подключить напрямую в стандартную сеть 220В. Чтобы запитать трехфазный асинхронный двигатель в бытовую сеть, потребуется изучить внутреннюю схему подключения его обмоток.

Способы подключения трехфазных электродвигателей

В электротехнике есть два типа коммутации питания трехфазного асинхронного двигателя:

  • методом звезды;
  • методом треугольника.

Перечисленные типы подключений используют на всех типах трехфазных электромоторов. От того, какой метод применен, зависит характер работы двигателя, его максимальные нагрузки. Так двигатели с подключением типа «звезда» обладают плавным запуском, но не могут работать на максимальной нагрузке, заявленной в техническом паспорте. Моторы с «треугольником» наоборот быстро стартуют и могут выдавать максимальную мощь.

Как определить схему подключения обмоток?

Распознать метод обмотки довольно просто. Это можно сделать двумя способами:

Посмотреть номерную табличку на двигателе. Обычно на ней отображены все технические данные, касающиеся работы двигателя. Среди прочего можно встретить два символа:

  • геометрическую фигуру треугольника;
  • звезду из трех лучей.
Читать еще:  Газель самосвал своими руками 402 двигатель

Необходимо сопоставить, какой из символов в таблице находится под значением 380В. Это может выглядеть следующим образом: 220/380В и рядом с ними символы «треугольник»/«звезда». Данное обозначение говорит, что на моторе, подсоединенном в сеть 380В, работает обмотка звезда.

Однако не всегда на моторе есть подобная табличка. Она может отсутствовать или быть затертой. Данный способ определения больше подходит для новых двигателей, которые никто не ремонтировал и не обслуживал. Старый агрегат лучше проверить самостоятельно. Для этого потребуется второй способ распознания типа обмотки.

Раскрутить блок управления и посмотреть на клеммник. На нем можно увидеть 6 выводов проводов. Соответственно – 3 начала и три конца обмотки. В зависимость от типа коммутации, этих выходов можно говорить о методе обмотки:

  • Метод «звезда». В этом случае три выхода соединены одной перемычкой. Три оставшихся входа подключены к отдельной фазе друг за другом.
  • Метод «треугольник». Каждые два вывода проводов последовательно соединены перемычками. Таким образом обмотки переходят друг в друга. При этом провода питания подведены к каждому входу индивидуально.

Данный способ дает полную картину того, как работает двигатель и по какой схеме он подключен. Зная это, можно подключить мотор к сети 220В.

ИНФОРМАЦИЯ: в редких случаях, раскрутив блок управления, можно обнаружить в нем не 6 контактов, а только 3. Это говорит о том, что схема коммутации находится в самом двигателе – под защитным кожухом со стороны торца.

Подключаем трехфазный двигатель к 220В

Данный способ подразумевает подключение трехфазного асинхронного двигателя к электросети 220В посредством конденсатора. Чтобы подключение было правильным, необходимо соблюсти несколько условий:

  1. Схема подключения для двигателя – треугольник. Если на двигателе выводы соединены по методу звезды, необходимо их перекоммутировать.
  2. Конденсатор подбирают по принципу: на каждые 100Вт – 10 мкФ.
  3. Способ подходит для простых двигателей, без внутренних блоков управления и предустановленных конденсаторов.

Для наглядности объяснения обозначим выводы от 1 до 6. Алгоритм подключения:

  1. Работаем только с группой выводов, располагающейся с одной стороны (например, с 1-го по 3-ий).
  2. Берем выводы 1 и 2 и подсоединяем на них провода конденсатора.
  3. Берем провод питания, который будет подключаться к сети 220В. Подключаем один конец провода питания к 1-му выводу, второй на 3-ий вывод. Второй вывод не трогаем, на нем запитан конденсатор и больше ничего!
  4. Запускаем двигатель.

Этот способ прост и безопасен. Также перед самим подключением рекомендуется прозвонить все обмотки на предмет «пробития» на корпус, а также целостности самих контуров.

Заключение

Подключить любой асинхронный двигатель к бытовой сети намного проще, чем это может показаться. Главное – знать схемы подключения, а также уметь обращаться с мультиметром.

Электрическая схема асинхронного двигателя с полным пояснением

Александр Ситников (Кировская обл.)

Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.

Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети. При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора. Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах. Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается. На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector