3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическая схема соединений элементов системы управления двигателя

4.11. Исполнительные механизмы системы управления двигателем

Исполнительными механизмами для ЭБУ-Д являются разного рода электромагниты и электродвигатели, управление которыми осуществляется с помощью выходных сигналов, вычисленных контроллером с использованием входных сигналов от рассмотренных выше датчиков. К таким исполнительным механизмам в первую очередь относятся электробензонасос, топливные форсунки, регулятор холостого хода, модуль зажигания, клапан рециркуляции выхлопных газов и система отвода паров бензина из топливного бака. Управление ими обеспечивается подачей выходных аналоговых сигналов ЭБУ-Д на соответствующие связанные с ними реле и соленоиды.

Реле и соленоиды. Активизируются подключением одного из выводов к «массе» через транзисторный ключ, находящийся в ЭБУ-Д. Другие выводы подключены к плюсовому зажиму

аккумуляторной батареи через ключ зажигания (рис. 4.20).

С о л е н о и д

Рис. 4.20. Схема подключения электромагнитного четырехконтактного реле с ЭБУ-Д и исполнительным механизмом

Форсунки. Электромагнитные форсунки впрыскивают топливо во впускной коллектор двигателя. Каждая форсунка управляется независимо и включается один раз за оборот распределительного вала двигателя синхронно с тактом впуска своего цилиндра. Сопротивление обмотки 12 ± 4 Ом.

Сигнал на начало впрыскивания топлива подается на обмотку 1 (рис. 4.21) электромагнита, размещенную в металлическом корпусе. В корпусе расположен также запирающий элемент 3 клапана, прижимаемый к седлу отверстия распылителя пружиной 5 . Когда на обмотку электромагнита от

ЭБУ-Д подается электрический импульс прямоугольной формы определенной длительности, запирающий элемент перемещается, преодолевая сопротивление пружины, и открывает отверстие распылителя. Топливо поступает в двигатель. После прекращения электрического сигнала запирающий элемент под действием пружины возвращается в седло. Количество впрыскиваемого топлива за цикл при постоянстве давления на входе в форсунку зависит только от длительности управляющего импульса.

Рис. 4.21. Топливная форсунка (инжектор):

– о мотка электромагнита; 2 – якорь;

– запирающий элемент; 4 – упор;

– пруж на; 6 – магнитопровод;

– выходные контакты; 8 – штуцер для топлива

Рабочий ход запирающего элемента составляет 0,1 мм. Интервал времени, во время которого инжектор остается открытым, весьма незначителен – обычно в пределах 1,5…10 мс. Это время, требуемое инжектору, чтобы открыться и закрыться, является очень важным, так как оно определяет дозу впрыснутого в цилиндр топлива.

Время реакции для электромагнитных форсунок в значительной степени зависит от индуктивности обмотки. В отличие от прямоугольного импульса напряжения, подаваемого на обмотку электромагнита, возникающий в ней ток i под действием противоЭДС не будет иметь прямоугольную эпюру. Мгновенное его значение во время прохождения переднего

фронта импульса напряжения определится формулой

где U напряжение, подаваемое на обмотку электромагнита, В;

R ее активное сопротивление, Ом;

индуктивность этой обмотки, Гн.

Регулятор холостого хода (РХХ). Шаговый электродвигатель регулирует количество воздуха, проходящего через обходной канал дроссельного патрубка. Используется для регулирования оборотов холостого хода двигателя при закрытой дроссельной заслонке. Значение 0% (0 шагов) соответствует команде ЭБУ-Д на полное закрытие байпаса (by pass – обводной канал), значение 100% (150 шагов) – команде на полное открытие байпаса. На холостом ходу норма 5…50 шагов.

Реле электробензонасоса (РБН). Включает и выключает электробензонасос. Сопротивление обмотки 48 ±6 Ом.

Соленоид клапана продувки адсорбера в системе

утилизации паров бензина (СУПБ).

соленоиде клапан продувки открыт и пары бензина из адсорбера направляются во впускной коллектор для последующего сжигания в двигателе. ЭБУподает сигнал на продувку адсорбера, когда температура охлаждающей жидкости двигателя выше 66 °С и дроссельная заслонка не полностью закрыта. Сопротивление обмотки соленоида 48±6 Ом.

Соленоид клапана рециркуляции выхлопных газов СКР

(EGR – exhaust gas recirculation). Действует по принципу широтно-импульсной модуляции. При подаче напряжения на соленоид в мембранную камеру клапана рециркуляции подается разрежение из впускного коллектора и клапан EGR открывается, а при выключенном соленоиде на мембрану подается атмосферное давление и клапан EGR закрыт. Количество выхлопных газов, направляемых во впускной коллектор, определяется соотношением продолжительности включенного и выключенного состояний соленоида в соответствии с широтномодулированным сигналом от ЭБУ-Д. Значение 0% соответствует команде ЭБУ-Д на полное закрытие клапана EGR, 100% – команде на полное открытие. ЭБУ-Д может использовать клапан, если температура охлаждающей жидкости станет выше 66 °С, а дроссельная заслонка несколько приоткрыта. Сопротивление обмотки соленоида 48 ±6 Ом.

Силовой модуль зажигания (СМЗ). Содержит две катушки зажигания и два мощных транзисторных ключа для коммутации токов в первичных обмотках катушек. Момент искрообразования устанавливается с помощью ЭБУ-Д

автоматически в зависимости от режима работы двигателя. Сопротивление первичной обмотки в каждой катушке 1 ± 0,6 Ом. Сопротивление вторичной обмотки 10 ± 2 кОм.

Контрольная лампа («Check Engine»). Сигнализирует о неисправностях в электронной системе управления двигателем. При включении зажигания чек-лампа горит – проверяется бортовая диагностическая система. После запуска двигателя лампа гаснет, если неисправности не обнаружены. Лампа «Check Engine» загорается при появлении неисправностей в цепях, контролируемых ЭБУ-Д. В этом случае в память ЭБУ-Д (в регистратор неисправностей) заносится соответствующий код ошибки. Лампа «Check Engine» гаснет, если неисправность устранена и более не обнаруживается или когда стираются коды

ошибок. При обнаружении пропусков воспламенения, которые

могут повредить каталитический газонейтрализатор, лампа

«Check Engine» мигает.

Электробензонасос. Это погружной насос турбинного типа с электрическим приводом. Он устанавливается в топливном баке, запитывается напряжением 12 В через электромагнитное реле, которым управляет ЭБУ- . В карбюраторных ДВС применяют еще бензонасосы с механическим приводом. Однако в последнее время стали использовать в основном инжекторные

двигатели, использующие исключительно погружные электро-

Схемы проводки на Ладу Гранта. Распиновки

Распиновка Лада Гранта

Современная модель Лада Гранта востребована сред отечественных автолюбителей по причине оптимальной стоимости и достаточной надежности. Хорошая прочность и небольшая стоимость расходных материалов дополнительно стимулируют спрос среди населения. Минусом автомобиля выступают частые поломки в электрической части. Бортовые системы нередко выходят из строя. На сайте представлена подробная электрическая схема Гранта с пояснениями и расшифровкой.

Полная распиновка Гранта, разбита не несколько участков для более подробного изображения и облегчения восприятия. Здесь присутствуют.

  1. Подкапотная часть – жгут объединяет все элементы проводов, расположенных в районе двигателя и основных приборов.
  2. Салонный модуль. Конструкция дополнительно разделена на зоны, предусматривающие подключение отдельных частей проводки.
  3. Модуль панели приборов. Здесь сосредоточены все элементы, идущие от датчиков, приборов и индикаторов.
  4. Задний жгут расположен в кормовой части автомобиля и отвечает за подачу питания к модулям освещения, замков и приборов.

Все приведенные расшифровка взяты из официальной инструкции производителя и полностью соответствуют заводским обозначениям и схеме версии стандарт.

Электросхема Гранта, отвечающая за подкапотное пространство

Здесь сосредоточены основные части проводки Лады Гранты, отвечающие за нормальную работу силовой установки:

  • 1 – питание фары, передней правой;
  • 2 – питание на стеклоомыватели;
  • 3 – напряжение на левую часть головной оптики;
  • 5 – элемент питания бортовой сети;
  • 6 – головной блок предохранителей;
  • 7 – генератор;
  • 8 – клаксон;
  • 9-11 – клеммные колодки к приборной панели;
  • 12 – контактная пара задних фар;
  • 13 – привод вентилятора основного радиатора.

Распиновка разъемов лада гранта по части воздуховодов салона

  • 1 – привод стеклоочистителя;
  • 2 – индикация остатка тормозной жидкости в расширительном бачке системы;
  • 3 – колодка – вывод на приборную панель.

Схема Лады Гранты – часть зажигания

  • 1 – индикатор напора смазки в картере силовой установки;
  • 2 – разъем генератора;
  • 3 – питание заслонки подачи топливной смеси;
  • 4 – термометр системы охлаждения;
  • 5 – подача сигнала на приборную панель;
  • 6 – продувка адсорбера;
  • 7 –спидометр;
  • 8 – ДМРВ;
  • 9 – ДПКВ;
  • 10 – ДК перед катализатором;
  • 11 – аппарат импульса управления;
  • 12 – сенсор концентрации кислорода в отработанных газах;
  • 13/14 – катушка и свечи зажигания соответственно;
  • 15 – драйверы форсунок;
  • 16 – контактная группа зажигания;
  • 17 – сенсор измерения детонации.

Распиновка приборов Гранта – схема приборной панели

Указанная часть является самой сложной. Большое количество выводов и миниатюрный размер клемм значительно усложняет поиск необходимой группы:

    • 1/2 – соединительные колодки на передний жгут электрооборудования;
    • 3/4 – аналогично для кормового жгута;
    • 5 – блок управления световыми приборами;
    • 6 – модуль выключателя зажигания;
    • 7 – бортовой компьютер;
    • 8 – рычаг переключения положения дворников;
    • 9 – приборка;
    • 10 – управление режимами аварийки;
    • 11 – замок крышки грузового отсека;
    • 12 – диагностический разъем;
    • 13 – колодка на привод воздухозаборников;
    • 14 – кнопка выключения подогрева заднего ветрового стекла;
    • 15 – контакт аварийки;
    • 16 – переключатель стоп сигналов;
    • 17/18 – контактная группа – вывод на радиооборудование (магнитола);
    • 19 – вращающийся модуль оборудования;
    • 20/41 – привод водительской/пассажирской подушки безопасности;
    • 21 – питание клаксона;
    • 22 – группа монтажного блока;
    • 24 – группа прикуривателя;
    • 25 – подсветка контроля печки;
    • 26 – салонный плафон;
    • 27 – контактная группа замка зажигания;
    • 28 – контроллер;
    • 29 – входящий разъем на заднюю часть бортовой сети;
    • 30 – электронная часть педали газа;
    • 31 – добавочный резистор;
    • 32 – мотор печки;
    • 33 – блок переключателей печки;
    • 34 – модуль блокировки дверей;
    • 35/36 – реле головного вентилятора системы охлаждения;
    • 37 – проводка реле компрессора;
    • 38 – дополнительное реле или катушка индикации заднего хода;
    • 39 – клавиша включения кондиционера;
    • 40 – привод автоматической коробки передач;
    • 42 – термометр испарителя;
    • 43 – вывод на задний жгут проводов.
Читать еще:  Двигатель ваз 2104 дизель характеристики



Распиновка ЭБУ Гранта

В автомобиле Лада Гранта применяется два типа электронных блоков управления двигателем. Принципиально системы незначительно отличаются, что исключает возможность их взаимозаменяемости.

Ввод первого датчика детонации

Ввод второго датчика детонации

Выход главного реле

Выход клапана продувки адсорбера

Вывод от форсунки №1/2/3/4

Земля сенсора температуры антифриза

Заземление бортовой электроники

Выход индикатора степени заряда аккумулятора

Клемма №15 от замка зажигания

Подача напряжения на ДПДЗ

Силовой разъем нагревателя ДДК

Выводы на катушку зажигания ¼ и 2/3 цилиндров соответственно

5/6 контакт привода дросселя

Схема реле Гранта

Расположение реле в основном монтажном блоке, расположенном в подкапотном пространстве:

  • 1 – привода кулера системы охлаждения;
  • 2 – защита центрального замка;
  • 3 – вторичное реле стартера;
  • 4 – дополнительная часть реле;
  • 5 – реле прерывателя поворотников и аварийки;
  • 6 – защита привода дворников;
  • 7/9 – вставка дальнего/ближнего режимов головного освещения;
  • 8 – элемент защиты клаксона;
  • 10 – подогрев ветрового стекла кормовой части;
  • 11 – главный блок реле;
  • 12 – реле бензонасоса.

Подробная схема ВАЗ Гранта (приборная доска)

Автомобиль в стандартной комплектации поставляется на рынок с 32 контактным щитком приборов. Стандартная распиновка щитка Гранта имеет всего 26 задействованных выводов. Остаточные разъемы предусмотрены для возможности довески оборудования или пользовательской доработки:

  • 1 – на датчик низкого давления масла в картере двигателя;
  • 2 – на выключатель индикации ручника;
  • 3 – предназначен для служебных нужд при диагностики панели приборов;
  • 4 – на выключатели внешних осветителей;
  • 5/6 – аналогично для правого и левого поворотников соответственно;
  • 7/8 – CAN L/H ;
  • 9 – индикация положения ремней безопасности;
  • 10 – контакт кнопки Перезагрузка подрулевого рычага;
  • 11 – отклик сенсора бачка тормозной жидкости;
  • 12/13 – на головную оптику, положение дальний/ближний свет;
  • 14/15 – выводы противотуманок перед/зад соответственно;
  • 16/18 – прием сигнала антенны иммобилайзера;
  • 17 – провод массы приборной доски;
  • 19/21 – на клемму №30/15;
  • 20 – на привод электроусилителя рулевого блока;
  • 22 – на датчики закрытия дверей;
  • 23/24 – кнопки МК для переднего и заднего хода соответственно;
  • 25 – на термометр окружающей среды;
  • 26 – индикация поплавка бензобака.

Лада Гранта: схема подключения приборов заднего жгута проводки

Задняя часть проводки автомобиля отвечает за оборудование кормы и боков автомобиля. все дополнительное оборудование подключается исключительно через эту часть магистралей:

  • 1/2 – контактная группа на приборную панель;
  • 3/4 – указатели поворотов;
  • 5 – индикатор включения ручника;
  • 6 – контакт подогрева заднего стекла;
  • 7 – салонная лампа;
  • 8 – индикатор положения водительского ремня безопасности;
  • 9 – плафон подсветки грузового отсека;
  • 10 – привод бензонасоса;
  • 11/15 – кормовая часть габаритов для левой и правой стороны;
  • 12 – привод блокировки крышки багажника;
  • 13 – кнопка включения салонного фонаря;
  • 14 – цепь дополнительного стопа;
  • 16-19 – клеммные колодки дверей для задней левой, задней правой, передней левой и передней правой дверей;
  • 20 – привод управления подушками безопасности;
  • 21 – контактная группа осветителей номерного знака;
  • 22 – на приборную доску;
  • 23/24 – задние датчики указателей скорости;
  • 25/26 – преднатяжители ремней безопасности;
  • 27 – группа контактов приборной панели.

Распиновка двери Гранта – передняя правая

  1. На задний жгут проводки.
  2. Привод электро стеклоподъемника.
  3. Часть центрального замка с индивидуальным приводом.
  4. Клавиша переключателя стеклоподъемника.
  5. Вывод части бортовой проводки к дверному динамику.

Принципиальная электрическая схема Гранта: участок двери переднего пассажира

  1. На клеммную колодку заднего жгута проводов.
  2. Привод электро стеклоподъемника.
  3. Замок двери.
  4. Элемент блока переключателей.
  5. Вывод дверного динамика.

Схема проводки гранта для задних дверей

Участки бортовой сети, ответственные за задние двери идентичны для обеих сторон автомобиля. Указанное расположения элементов актуально для левой и правой части:

  • 1 – на задний жгут;
  • 2 – на динамик;
  • 3 – дверные замки.

Распиновка колодки системы вентиляции салонного пространства

  1. Привод дворников.
  2. Сенсор остатка тормозной жидкости в расширительном бачке.
  3. На колодку приборной доски.

Прирципиальная схема Лада Гранта – часть осветителя номерного знака

Самый малый элемент бортовой сети отличается наличием всего трех выводов. Простота конструкции омрачается подверженностью частым поломкам – сеть страдает от попадания воды, грязи и конденсата и требует тщательного ухода:

  • 1 – на задний жгут бортовой проводки;
  • 2/3 – лампы (левая и правая соответственно).

Полная схема Гранта для модуля управления осветительными приборами

  • 2/3 – на задние/передние противотуманки;
  • 4 – к подсветке;
  • 30 – вход 12 Вольт от генератора;
  • 31 – корпус механизма;
  • 56 – вывод на нити ближнего света;
  • 58 – на габариты и лампы подсветки;
  • Xz – группа входа плюсовой клеммы от замка зажигания.

Профилактические меры

Для того чтобы заводская проводка Лада Гранта служила долго и не ломалась, опытные эксперты настоятельно рекомендуют выполнять ряд не сложных правил.

  1. Периодически проверять все контактные разъемы и клеммы на предмет окислений и ржавления. Подобные повреждения соединений могут вызвать короткое замыкание и критическое снижение проводимости магистрали, что воспринимается бортовым компьютером как ошибка или поломка.
  2. Использовать только оригинальные расходные материалы и элементы электроники. Применение поддельной продукции не дает гарантии работоспособности цепи. При этом некоторые элементы, при повреждении вызывают перепад напряжения в сети, что становится прямой причиной выхода из строя остального оборудования или пожара.
  3. Использовать специальное масло для обработки контактных групп. Жидкость продается в автомагазинах или магазинах электроники. После обработки, контакты покрываются влаго не проницаемым слоем, что в 2-3 раза увеличивает срок их эксплуатации.
  4. Тщательно следить за степенью зарядки и состоянием аккумуляторной батареи. Проводка Лада Гранта критично воспринимает значительное падение напряжения в бортовых цепях. Как следствие – это может стать причиной повреждения прошивки электронных блоков управления.

Диагностика и ремонт

Все электрооборудование автомобиля Лада Гранта должно диагностироваться при наличии мультиметров и тестовых стендов. При обнаружении повреждения – элемент заменяется исключительно на заведомо исправный. Применение подержанных деталей может привести к появлению непредвиденных поломок, некорректной работе оборудования и приборов.

Электрическая схема Лады Гранты является сложной частью оборудования автомобиля. Диагностические работы и ремонт бортовых цепей необходимо осуществлять при наличии требуемых инструментов и необходимых знаний. При отсутствии вышеуказанного – рекомендуется обратиться к квалифицированным мастерам за помощью.

Opel Astra J

Электросхемы

  • Стеклоочистители;
  • Стеклоомыватели;
  • Датчики системы управления двигателем;
  • Топливные форсунки и модуль зажигания;
  • Стартер и аккумуляторная батарея;
  • Стартер;
  • Блок управления двигателем;
  • Топливный насос;
  • Система изменения фаз газораспределения;
  • Питание блока управления двигателем;
  • Датчики концентрации кислорода и система улавливания паров топлива;
  • Датчики давления и температуры;
  • Указатели поворота и аварийная сигнализация;
  • Габаритные огни;
  • Фары дальнего и ближнего света (галогеновые);
  • Фары дальнего и ближнего света (ксеноновые);
  • Стоп-сигналы;
  • Фонари света заднего хода и освещения номерного знака.

Схема 1. Стеклоочистители: 1 — монтажный блок моторного отсека; 2 — переключатель стеклоочистителя ветрового окна; 3 — переключатель стеклоочистителя окна двери задка; 4 — блок управления электрооборудованием; 5 — моторедуктор стеклоочистителя ветрового окна; 6 — моторедуктор стеклоочистителя окна двери задка; 7 — реле заднего стеклоочистителя; 8 — монтажный блок моторного отсека

Схема 2. Стеклоомыватели: 1 — переключатель стеклоомывателя ветрового окна; 2 — комбинация приборов; 3 — центральный информационный дисплей; 4 — преобразователь сигнала; 5 — блок управления электрооборудованием; 6 — монтажный блок моторного отсека; 7 — реле стеклоомывателя ветрового окна; 8 — реле стеклоомывателя окна двери задка; 9 — выключатель стеклоомывателя окна двери задка; 10- насос стеклоомывателя

Читать еще:  Ваз 211540 схема управления двигателем

Схема 3. Датчики системы управления двигателем: 1 — монтажный блок моторного отсека; 2 — реле системы зажигания; 3 — топливная форсунка; 4- блок управления двигателем; Б — модуль зажигания

Схема 4. Топливные форсунки и модуль зажигания: 1 — блок управления двигателем; 2 — датчик положения впускного распределительного вала; 3 — датчик положения выпускного распределительного вала; 4 — датчик положения педали акселератора; 5 — датчик положения коленчатого зала; 6 — датчик положения дроссельной заслонки; 7 — электромагнитный клапан впускного распределительного вала; 8 — электромагнитный клапан выпускного распределительного вала; 9 — датчик абсолютного давления во впускной трубе; 10- кондиционер; 11 — датчик положения педали сцепления; 12 — датчик температуры и массового расхода воздуха; 13 — первый датчик температуры охлаждающей жидкости; 14- второй датчик охлаждающей жидкости

Схема 5. Стартер и аккумуляторная батарея: 1 — блок управления электрооборудованием; 2 — комбинация приборов; 3 — преобразователь сигнала; 4 — блок плавких вставок моторного отсека; 5 — блок управления двигателем; 6 — аккумуляторная батарея; 7 — стартер; 8 — амперметр; 9 — генератор

Схема 6. Стартер: 1 — блок плавких вставок моторного отсека; 2 — блок управления двигателем; 3 — аккумуляторная батарея; 4 — выключатель (замок) зажигания; 5 — монтажный блок моторного отсека; 6 — реле стартера; 7 — блок управления электрооборудованием; 8 — автоматическая коробка передач; 9 — гидротрансформатор; 10 — управление автоматической коробкой передач; 11 — переключатель режимов коробки передач; 12 — селектор коробки передач; 13 — стартер

Схема 7. Блок управления двигателем: 1, 2 — вентиляция и кондиционирование; 3 — управление механической коробкой передач; 4- управление автоматической коробкой передач; 5 — охлаждение двигателя; 6 — блок управления двигателем; 7,12 — стартер и генератор: 8,9- комбинация приборов; 10,11 — наружное освещение

Схема 8. Топливный насос: 1 — монтажный блок моторного отсека; 2 — главное реле зажигания; 3 — реле топливного насоса; 4, 5 — кабель передачи данных; 6 — блок управления двигателем; 7 — экран кабеля питания топливного насоса; 8 — датчик давления топлива; 9 — топливный насос

Схема 9. Система изменения фаз газораспределения: 1 — блок управления двигателем; 2 — датчик положения впускного распределительного вала; 3 — датчик положения выпускного распределительного вала; 4 — датчик положения коленчатого вала; 5 — электромагнитный клапан впускного распределительного вала; 6 — электромагнитный клапан выпускного распределительного вала; 7 — датчик детонации

Схема 10. Питание блока управления двигателем: 1 — монтажный блок моторного отсека; 2 — главное реле зажигания; 3 — реле блока управления двигателем; 4, 5 — передача данных; 6 — блок управления двигателем

Схема 11. Датчики концентрации кислорода и система улавливания паров топлива: 1 — монтажный блок моторного отсека; 2 — реле блока управления двигателем; 3 — электромагнитный клапан системы вентиляции топливного бака; 4 — электромагнитный клапан системы рециркуляции отработавших газов; 5 — первый датчик концентрации кислорода; 6 — второй датчик концентрации кислорода; 7 — блок управления двигателем

Схема 12. Датчики давления и температуры: 1 — монтажный блок моторного отсека; 2 — реле блока управления двигателем; 3 — блок управления двигателем; 4 — электромагнитный клапан системы рециркуляции отработавших газов; 5 — термостат; б — датчик температуры и массового расхода воздуха; 7 — датчик абсолютного давления во впускной трубе; 8 — датчик температуры охлаждающей жидкости; 9 — второй датчик температуры охлаждающей жидкости; 10 — монтажный блок моторного отсека

Схема 13. Указатели поворота и аварийная сигнализация: 1 — комбинация приборов; 2 — левый боковой указатель поворота; 3 — левый передний указатель поворота; 4 — правый боковой указатель поворота; 5 — правый передний указатель поворота; 6 — выключатель аварийной сигнализации; 7 — левый задний указатель поворота; 8 — правый задний указатель поворота; 9 — переключатель указателей поворота

Схема 14. Габаритные огни: 1 — комбинация приборов; 2 — левая блок-фара; 3 — левый задний фонарь на крыле; 4 — правая блок-фара; 5 — правый задний фонарь на крыле; 6 — выключатель габаритных огней; 7 — левый задний фонарь на двери задка; 8 — правый задний фонарь на двери задка

Схема 15. Фары дальнего и ближнего света (галогеновые): 1 — комбинация приборов; 2 — реле переключения дневного и ближнего света левой блок-фары; 3 — реле переключения дневного и ближнего света правой блок-фары; 4 — реле дальнего света; 5 — монтажный блок моторного отсека; 6 — левая лампа дневного света; 7 — левая лампа ближнего света; 8 — правая лампа дневного света; 9 — правая лампа ближнего света; 10 — левая лампа дальнего света; 11 — правая лампа дальнего света

Схема 16. Фары дальнего и ближнего света (ксеноновые): 1 — монтажный блох моторного отсека; 2 — реле света фар; 3 — комбинация приборов; 4 — дневное освещение; 5 — левая лампа ближнего света (ксеноновая) и блок розжига; 6 — левая лампа дальнего света; 7 — левая лампа дневного света; 8 — левая блок-фара; 9- правая лампа дневного света; 10 — правая лампа дальнего света; 11 — правая лампа ближнего света (ксеноновая) и блок розжига; 12 — правая блок-фара

Схема 17. Стоп-сигналы: 1 — комбинация приборов; 2 — выключатель стоп-сигнала; 3 — колодка подключения прицепа; 4 — левая лампа стоп-сигнала; 5 — правая лампа стоп-сигнала; 6 — дополнительный стоп-сигнал

Схема 18. Фонари света заднего хода и освещения номерного знака: 1 — комбинация приборов; 2 — зеркала заднего вида; 3 — левая лампа фонаря освещения номерного знака; 4 — правая лампа фонаря освещения номерного знака; 5 — левый фонарь света заднего хода; 6 — правый фонарь света заднего хода

Схема бортового оборудования автомобиля

Графическое изображение логических и функциональных взаимосвязей и соединений различных устройств автомобильного бортового оборудования выполняется в виде схем трех типов:

  • структурные
  • функциональные
  • принципиальные электрические схемы

В настоящей главе все три типа схем рассматриваются на примерах бортового оборудования немецких автомобилей.

Структурные схемы

Структурная схема сложного технического устройства составляется как самая обобщенная графическая модель. Такую модель иногда называют канонической и изображают в виде блок-схемы, на которой указываются системообразующие (структурно-логические) взаимосвязи.

Структурная схема (каноническая модель) электронной системы автоматического управления двигателем (ЭСАУ-Д), в которой двигатель является объектом автоматического управления. Структурная схема «описывает» совокупность ЭСАУ-Д и двигателя как единую и достаточно сложную информационно-энергетическую систему по самым общим внешним признакам ее функционирования. Такими признаками являются: входные потоки (А), выходные потоки (Б), потоки случайных внешних воздействий (В) и потоки бесполезных (чаще всего вредных) отходов (Г). Можно показать, что все эти внешние потоки состоят из материи трех видов: энергии, различных веществ (материалов) и информации*.

Внешние материальные потоки как признаки функционирования технической системы проявляют себя по-разному. Например, техническое состояние двигателя может быть оценено по таким показателям бесполезных отходов, как акустические шумы (АШ) и химический состав выпускных отработавших газов (ВОГ). Это та информация, которая используется при проведении инструментальной технической диагностики ДВС. Механическая энергия газового потока выхлопных отработавших газов (ВОГ) используется на некоторых автомобилях для вращения турбины в подсистеме турбонаддува, а тепло ВОГ — для подогрева кузова. Таким образом, поток бесполезных отходов может стать частично полезным. Наличие веществ в бесполезных отходах очевидно — это все загрязнители, которые попадают в окружающую среду при работе ДВС.

• Опуская рассмотрение всех остальных внешних признаков функционирования технической системы, заметим, что каноническая модель, составленная как описание внешних материальных потоков, — это первый уровень моделирования сложной технической системы.


Второй уровень — это подробное описание всех периферийных материальных потоков и устройств системы. Покажем это на примере входных датчиков и потоков для ЭСАУ-Д. Входными материалами (веществами) для этой системы являются бензин (Б) из топливного бака (ББ), атмосферный воздух (В) в воздушном канале (АВ), охлаждающая жидкость (ОЖ) и моторное масло (ММ) в двигателе (ДВС). Энергетический поток ЭЭ поступает к электростартеру во время запуска ДВС от бортовой аккумуляторной батареи (АКБ). После запуска двигателя входным энергетическим потоком становится бензин, который выжигается в цилиндрах. Первичный (входной) информационный поток для ЭСАУ-Д — это сигналы от водительской педали газа (ПГ) и от колесных датчиков (КД) системы АБС, которая по отношению к двигателю выполняет функции электронной системы управления при неравномерном вращении ведущих колес во время страгивания автомобиля с места (функции системы ASR).

Читать еще:  Jtd двигатель что это такое

Описать компоненты можно и для случайных и для выходных потоков.
Третий уровень моделирования с помощью структурных блок-схем включает в себя конкретизацию компонентов внутри технической системы на уровне их главных исполнительных функций .

• Ценность канонической модели и построенных на ее основе структурных блок-схем состоит в том, что с их помощью можно легко и просто представить полный состав материальных потоков и технических устройств, которые принимают участие в работе данной сложной технической системы. При этом подробное схемотехническое решение системы не рассматривается.

Таким образом, канонические модели и структурные схемы являются инструментами системотехнического (структурно-логического), а не схемотехнического (предметного) моделирования.

Функциональные схемы
Функциональные схемы применяются на начальном этапе схемотехнических разработок для новой технической системы или при изучении уже разработанных и поступивших в эксплуатацию систем. Таким образом, функиональные схемы являются связующим звеном между более общим (структурные схемы) и конкретным частным (принципиальные схемы).

Функциональная схема отображает логическую взаимосвязь технических устройств внутри замкнутой системы с указанием ее рабочих входов и полезных выходов и составляется для каждой подсистемы бортового оборудования в отдельности. Полные функциональные схемы (сразу на все бортовое оборудование автомобиля) не составляются.

Функциональная схема может быть обобщенной, когда на одном чертеже изображаются устройства с различными принципами действия (механические, гидравлические, электрические, электронные и прочие). Такие схемы наиболее ярко отображают логику построения сложной системы в целом. В качестве примера можно рассмотреть обобщенную функциональную схему системы впрыска бензина «L-Jetronic».

Разобраться в устройстве и в принципе действия системы «L-Jetronic» по полной функциональной схеме достаточно просто.

В некоторых случаях составляют упрощенную функциональную схему. Это когда на чертеже изображаются взаимосвязи только одной физической (например, электрической или гидравлической) природы.

Для практического применения в условиях эксплуатации упрощенные функциональные схемы часто делают предметными, то есть вместо условных обозначений отдельных компонентов в виде «черных блоков» (квадраты, треугольники и т.п.) изображают их натуральный внешний вид. Такая функциональная схема для комплексной системы «Motronic МЗ/2». Главное преимущество предметной функциональной схемы — ее наглядность, благодаря чему значительно проще отыскать ту или иную деталь на автомобиле во время его ремонта. Но самой полной и наиболее полезной для поиска неисправностей является принципиальная электрическая схема.

Принципиальные электрические схемы

Классическая принципиальная электрическая схема — это развернутое и абсолютно подробное графическое изображение токопроводных соединений на уровне мельчайших неразборных деталей данного блока или устройства. Такими деталями долгоа время являлись резисторы, конденсаторы, катушки индуктивности, полупроводниковые приборы, реле, коммутационные элеманты и соединительные провода между ними (печатные плеты).

С появлением микросхем неразборными деталями устройства стали целые электронные блоки с заданными функциональными свойствами, и теперь принципиальные схемы стали составляться на уровне микро-элактронных блоков. Внутреннее содержание отдельного неразборного блока, выполненного на микросхеме, никого не интерасует, так как такой блок не ремонтируется.

При еще более глубокой интеграции электрических схем на одном полупроводниковом монокристалле могут создаваться не только функциональные блоки электронных устройств, но и сами эти устройства в полностью зааершанном виде, например микропроцессоры. Такие устройстве не принципиальной схеме изображаются в виде «черных ящиков» с множеством пронумерованных выходов и входое.

Микропроцессоры оснащаются блоками электронной памяти, е также внутренней периферией, е которую входят входные преобрезователи аналоговых сигналов в цифровые коды, выходные усилители, внутренний интерфейс. Получается функционально завершенный электронный блок упревления (ЗБ?), который применительно к автомобилю часто называется контроллером или авторегулятором.
Принципиальная схеме цифрового контроллере, входящая в соствв микропроцессорной системы зажигания и составленная из неразборных стандартных блоков (микросхем). Эта схеме больше напоминает функциональную, так как на ней нет конкретных электрических соединений. Но это только не первый взгляд. Не самом деле соединения между микросхемами внутри контроллера тек же, как и семи микросхемы, — нерезборны и не схеме обозначены как интерфейсы.

В условиях автотранспортных предприятий (ДТП) или станций технического обслуживания (СТО) контроллеры, как и любые бортовые 3BY, не ремонтируются, тек как для обнаружения неисправных микросхем требуется специальное фирменное диагностическое оборудование и высококвалифицированный персонал.

Электрическая схема борт сети автомобиля

Принципиальная электрическая схеме всех токопроводных соединений не борту автомобиля называется схемой электрооборудования.

Электрооборудование современного легкового автомобиля — это сложный комплекс электрических машин и апперетое, электронных блоков упревления контрольно-измерительных и световых приборов, различных реле, исполнительных электромегнитов е автотронных системах, выключателей, предохранителай и соединительных проводов. Все это объединяется в общую электрическую однопроводную бортсеть с использованием металлических деталей двигателя и кузова в качестве второго (отрицательного) провода — «мессы». Проводная часть бортсети — это е основном жгуты электропрсводое, несущие и разводящие по потребителям положительный потенциал от системы электроснабжения. Все соединения подтоком более одного ампера (кроме стартерных цепей) защищены предохранителями. Провода
обеспечивают также информационную электросвязь между компонентами бортового оборудования. Часть таких проводов экранирована. От надежности электрооборудования и токопроводных соединений в значительной степени зависит эффективность эксплуатации автомобиля — расход топлива, загрязнение окружающей среды, комфортность и безопасность движения и т.д.

Номенклатура и число изделий электрооборудования на автомобилях, а также выполняемые ими функции постоянно расширяются. В настоящее время применяются новые, более сложные по конструкции и схемным решениям изделия и системы не безе электронной и микропроцессорной техники. Создаются автотронные системы управления. Электрооборудование соаременного евтомобиля включает в себя более двухсот изделий, свыше 1,5 тыс. контактов и около 1,5 км соединительных проводов. Его стоимость постоянно растет и в настоящее время состевляет 25…30% от стоимости автомобиля. Усложнение электрооборудования и широкое применение электроники имеют и отрицательную сторону. Значительно возросла сложность технического обслуживания и ремонта бортового оборудования, что привело к необходимости привлечения высококвалифицированного персонала не ДТП и СТО, е также к использованию специального дорогостоящего диагностического оборудования и фирменного ремонтного инструменте.

На современном автомобиле выделяют группы устройств, образующих самостоятельные системы с определенными функциями в общей схеме электрооборудования автомобиля. К ним относятся: системы электроснабжения, пуска, управления двигателем (впрыском топлива и зажиганием), автотронная система антиблокировки тормозов(ABS), системы контрольно-измерительных приборов, освещения, световой и звуковой сигнализации; подсистемы управления стеклоочистителем и стеклоомывателем, управления автоматической коробкой передач, блокировки дверей; радиооборудование и многое другое. Каждая группа устройств включает в свой состав коммутационную аппаратуру (реле, выключатели, переключатели), предохренители, провода, соединительные колодки и штекеры.

Наглядность, полнота и простота принципиальной схемы обуславливают ее применение в процессе диагностирования и ремонта электрооборудования автомобилей для обнаружения неисправностей как отдельных элементов, так и блоков в целом, а также для поиска повреждений в соединительных проводах и разъемах.

• Отдельно следует сказать о перспективе совершенствования электрооборудования в части электрической проводки на борту автомобиля. же в ближайшие годы предполагается заменить дорогостоящие и сложные жгуты медных проводов на одну общую для всех электропотребителей токопроводную шину. По такой шине будет разводиться положительный потенциал от системы электроснабжения аналогично тому, как разводится отрицательный потенциал по «массе» автомобиля. При этом включение и выключение каждого потребителя будет осуществляться от соответствующей клавиши на водительском пульте управления, который подключается к общему для всех потребителей и разветвленному в нужных местах световолоконному кабелю. Возможен вариант управления, при котором сигнальным проводом будет сама токопроводная шина (с использованием высокочастотной селекции в потоке управляющих радиосигналов).

Подсистема электропроводки с общей токовой шиной и с единым интерфейсным каналом управления получила название «мультиплексная проводка». В мультиплексной проводке водительский пульт управления содержит источник безэнтропийной энергии (свет или радиочастоту) и шифратор сигналов управления, а каждый потребитель — избирательный дешифратор, выделяющий «свой» сигнал из общего потока. Подсистема мультиплексной проводки значительно надежнее, проще при поиске неисправностей, легко может быть оборудована электронными схемами самодиагностики, и главное, исключает использование дорогостоящей меди. Ясно, что принципиальная схема электрооборудования с мультиплексной проводкой также значительно упростится, так как в ней исчезнет электропроводная деталировка.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector