1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические режимы работы для двигателей постоянного тока

Характеристики двигателей постоянного тока

Классификация и основные уравнения двигателей постоянного тока

Двигатели постоянного тока находят широкое применение в тех случаях, когда по условиям работы исполнительного механизма требуется широкое изменение частоты вращения, и при этом часто имеют преимущества по сравнению с двигателями переменного тока. Используются они в металлургической промышленности, стан­костроении, системах автоматического регулирования, широко применяются на электрическом транспорте, в авиации и автомо­билестроении. Двигатели постоянного тока могут иметь мощность в пределах от нескольких ватт до нескольких тысяч киловатт.

Как и генераторы, двигатели постоянного тока классифициру­ют по способу включения обмотки возбуждения. Различают дви­гатели независимого, параллельного, последовательного и сме­шанного возбуждения. Электрические схемы этих двигателей ана­логичны схемам соответствующих генераторов. Отличие заключается в том, что ток якоря Iа в двигателях незави­симого и последовательного возбуждения равен сетевому току I, а в двигателях параллельного и смешанного возбуждения из сети потребляется и ток возбуждения Iв.

Рассмотрим основные уравнения двигателей постоянного тока.

1. Уравнение равновесия напряжений для цепи якоря в режиме двигателя:

(24.1)

Упрощение уравнения производится так же, как для ге­нераторов:

(24.2)

2. Уравнение баланса токов для двигателей параллельного и смешанного возбуждения:

(24.3)

3. Уравнение движения:

(24.4)

где J — момент инерции якоря двигателя и вращающихся частей приводного механизма; М— электромагнитный момент, развива­емый двигателем, Мс — момент сопротивления, равный сумме моментов приводимого механизма М2 и тормозного мо­мента Mo, обусловленного потерями внутри самого двигателя.

Уравнение частоты вращения двигателя можно получить если в(24.2) подставить вместо ЭДС его значение

.

Разрешив полученное уравнение относительно n получим

(24.5)

Характеристики двигателей постоянного тока

Основными характеристиками, по которым оценивают рабо­чие свойства двигателей, являются:

скоростная — зависимость частоты вращения от тока якоря,

моментная — зависимость электромагнитного момента от тока якоря,

механическая— зависимость частоты вращения от электромаг­нитного момента, п =f(M).

Двигатели независимого и параллельного возбуждения.Все ха­рактеристики этих двигателей получают при постоянных значе­ниях напряжения сети и тока возбуждения, обычно соответству­ющих своим номинальным значениям: U= U ном; IB = Iв.ном.

1. Скоростная характеристика n=f(Ia). Выражением, определя­ющим эту характеристику, является уравнение (24.5). Как следует из этого уравнения, если магнитная цепь двигателя ненасыщена и магнитный поток Ф = const, то зависимость п(Iа) линейная и с ростом тока якоря частота вращения уменьшается. Этому случаю соответствует сплошная линия на рис. 24.1.

Поток якоря вызывает умень­шение потока возбуждения ( ), то выражение для часто­ты вращения будет иметь вид

(24.6)

Рис.24.1. Скоростная(механическая)характеристика двигателя независимого возбуждения

где Ф — магнитный поток, соответствующий номинальному току возбуждения 1В ном при холостом ходе двигателя; — уменьшение маг­нитного потока из-за размагничива­ющего действия реакции якоря.

Как следует из формулы (24.5), при возрастании тока якоря в резуль­тате падения напряжения ча­стота вращения п снижается, а при уменьшении потока Ф — увеличи­вается. Это показано на рис. 24.1 штриховой линией.

Если относительное значение суммарного сопротивления цепи якоря больше относительного значения уменьшения потока , то частота вращения с ростом тока якоря будет уменьшаться. Если же

Двигатели последовательного и смешанного возбуждения.Осо­бенностью двигателя последовательного возбуждения является то, что его ток возбуждения равен току якоря (IВ = Iа), и поэтому для вывода выражений, определяющих вид его характеристик, пред­варительно необходимо определить связь между магнитным пото­ком Ф и током якоря Iа = Iв. Зависимость Ф =f(Ia) называется маг­нитной характеристикой. Идеальная магнитная характеристика (без учета размагничивающего действия реакции якоря) показана рис. 24.3 сплошной линией, а реаль­ная (с учетом реакции якоря) — штри­ховой.

Рис. 24.3. Магнитная характеристика двигателя последовательного вобуждения

Все характеристики двигателя по­следовательного возбуждения получа­ют при постоянном напряжении пи­тания (обычно при U= UHM).

1. Скоростная характеристика п = f(Ia). Подставив в уравнение (24.5) выражение для потока в зависимости от тока якоря в соответствии с маг­нитной характеристикой, получим формулу скоростной характеристики двигателя. Для упрощения анализа пренебрежем насыщением магнитной цепи и будем считать магнитную ха­рактеристику линейной:

(24.9)

Рис.24,4. Скоростная характеристика двигателя последовательного возбуждения

Рис.24.5. Моментная характеристика двигателя последовательного возбуждения

Тогда, подставив выражение (24.9) в уравнение (24.5), полу­чим

(24.10)

Из уравнения (24.10) следует, что скоростная характеристика имеет гиперболический вид; на рис.24.4 она изображена сплош­ной линией. Особенностью скоростной характеристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря. Из уравнения (24.10)следу­ет также, что ось ординат (ось п) является для этой характеристи­ки асимптотой.

Реальная скоростная характеристика с учетом размагничиваю­щего действия реакции якоря будет отклоняться от гиперболи­ческой кривой вверх, как показано штриховой линией на рис. 24.4.

2. Моментная характеристика M-f(Ia). Подставив в уравнение для момента выражение (24.9), получим формулу для электромагнит­ного момента двигателя с последовательным возбуждением:

(24.11)

Из выражения следует, что электромагнитный момент двигателя последовательного возбуждения пропорционален квад­рату тока якоря, т.е. моментная характеристика имеет параболи­ческий вид; на рис.24.5 она изображена сплошной линией. С учетом размагничивающего действия реакции якоря момент в области боль­ших токов будет меньше момента, получаемого по выражению (24.11) (штриховая линия на рис. 24.5).

3.Механическая характеристика п =f(М). Из выражения (24.11) ток якоря

(24.12)

Тогда, подставив (24.12) в (24.10), получим аналитическое вы­ражение для механической характеристики:

(24.13)

Из выражения (24.13) следует, что механическая характерис­тика двигателя последовательного возбуждения при U= const так же, как и его скоростная характеристика, имеет практически ги­перболический вид (рис.24.6).

Рис. 24.6. Механическая характеристика двигателя последовательного возбуждения

Читать еще:  Газотурбинный двигатель танк расход топлива

Особенностью механической харак­теристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря. Из урав­нения (24.13) следует также, что ось ординат (ось п) является асимптотой для этой характеристики.

При частота вращения двигателя стремится к бесконеч­ности. В этом случае говорят, что двигатель идет вразнос. Чрезмер­ное повышение частоты вращения опасно для механической проч­ности якоря, так как из-за больших значений центробежных сил, возникающих в этом случае, может нарушиться целость банда­жей, удерживающих обмотку якоря, и произойти разрушение коллектора. Следовательно, нельзя допускать работу двигателя последовательного возбуждения при холостом ходе и малых на­грузках, т. е. нагрузка не должна быть меньше 25. 31 % номиналь­ной. Лишь для двигателей малой мощности (десятки ватт) допус­тима работа при холостом ходе, так как их собственный момент потерь М достаточно велик.

Вследствие сильной зависимости частоты вращения от нагруз­ки механические и скоростные характеристики двигателей после­довательного возбуждения называют мягкими.

Характеристики двигателей сме­шанного возбуждения занимают про­межуточное положение между соот­ветствующими характеристиками двигателей параллельного и последо­вательного возбуждения. При слабой последовательной обмотке они будут приближаться к характеристикам дви­гателя параллельного возбуждения, а при сильной — к характеристикам двигателя последовательного возбуж­дения.

Сравнение характеристик двигате­лей.Двигатели параллельного (неза­висимого) возбуждения имеют жест­кую механическую характеристику и поэтому применяются в установках, где необходимо поддерживать постоянную частоту вращения при изменении момента нагрузки, на­пример, в станках, прокатных станах, вентиляторах и т.д. Они также широко применяются при необходимости регулирования частоты вращения в широком диапазоне. В этом случае подводи­мое к якорю двигателя напряжение изменяется в широких пре­делах, в то время как напряжение возбуждения остается неиз­менным.

В двигателях последовательного возбуждения электромагнитный момент имеет квадратичную зависимость от тока якоря, поэтому их применение предпочтительно, когда требуются большие пус­ковые моменты и наблюдаются частые перегрузки по моменту. Связано это с тем, что при одних и тех же колебаниях момента сопротивления ток и потребляемая мощность у двигателей после­довательного возбуждения изменяются существенно меньше, чем у двигателей параллельного возбуждения. Двигатели последова­тельного возбуждения находят широкое применение на электриче­ском транспорте и в подъемных устройствах.

Режимы работы машины постоянного тока

В двигателях параллельного возбуждения при неизменном то­ке в обмотке возбуждения магнитный поток изменяется при нагрузке весьма незначительно, поэтому с некоторым при­ближением можно принять . В этом случае электромаг­нитный момент [см. (25.24)] пропорционален току в цепи якоря и механическая характеристика может быть представлена зависимостью (рис. 29.8). Если эту характеристику про­должить в обе стороны за пределы осей координат (прямая 1), то можно показать, что электрическая машина в зависимости от ве­личины и знака внешнего момента, действующего на ее вал со стороны связанного с ним механизма, может работать в трех ре­жимах: двигательном, тормозном и генераторном.

При работе двигателя без нагрузки ток в цепи якоря не­большой. При этом частота вращения (точка А). Затем с по­явлением на валу двигателя нагрузочного момента, противодейст­вующего вращающему, ток в цепи якоря возрастает, а частота вращения уменьшается. Если увеличить противодействующий момент до значения, при котором якорь двигателя остановится (точка В), то ЭДС и ток двигателя достигает значения . Если двигатель применяют для привода механизма, на­грузочный момент которого может быть больше вращающегося (например, привод барабана, на который наматывается трос с гру­зом), то при последующем увеличении нагрузочного момента это­го механизма якорь машины вновь начнет вращаться, но теперь уже в другую сторону. Теперь момент, действующий на вал элек­трической машины со стороны нагрузочного механизма, будет вращающим, а электромагнитный момент машины — тормозя­щим, т. е. электрическая машина перейдет в тормозной ре­жим. При работе машины в этом режиме ЭДС якоря действует согласованно с напряжением, т. е. .

При использовании машины в тормозном режиме необходимо принять меры для ограничения тока якоря. С этой целью в цепь якоря включают добавочное сопротивление, величина которого обеспечивает получение искусственной характеристики двигателя, пересекающейся с осью абсцисс при токе якоря (штрихо­вая прямая).

Если при работе двигателя в режиме х.х. к его валу приложить момент, направленный в сторону вращения якоря, то частота вра­щения, а следовательно, и ЭДС начнут возрастать. Когда ЭДС , машина не будет потреблять тока из сети (точка С) и час­тота вращения якоря достигает значения, называемого погранич­ной частотой вращения

Рис. 29.8. Режимы работы машины постоянного тока:

1 — с параллельным (независимым) возбуждением;

2 — со смешанным возбуждением;

3 — с последовательным возбуж­дением

При дальнейшем увеличении внешнего момента на валу ма­шины ЭДС станет больше напряжения, а в цепи якоря опять возникает ток, но другого направления. При этом машина перей­дет в генераторный режим: механическая энергия, затрачи­ваемая на вращение якоря, будет преобразовываться в электриче­скую и поступать в сеть.

Перевод машины из двигательного в генераторный режим ис­пользуют для торможения двигателя, так как в генераторном ре­жиме электромагнитный момент является тормозящим (рекупера­тивное торможение).

Режимы работы электродвигателей

Что нужно для правильного выбора электродвигателя? Его основные электрические характеристики – это:

  • номинальное напряжение;
  • номинальная мощность;
  • скорость вращения вала.

Но двигатели могут работать по-разному. Самый легкий для электромотора режим работы описывается выражением «запустил и забыл». В момент запуска двигатель потребляет ток, в несколько раз больший номинального. Затем ток не изменяется во времени, механическая нагрузка на валу стабильна. При этом обмотки и магнитопроводы нагреваются до рабочей температуры, которая также остается постоянной.

Но двигатели приводят во вращение механизмы различного назначения. Некоторые из них требуют частых запусков и остановок, изменений направления вращения. Наглядный пример – работа электродвигателей в составе грузоподъемных механизмов: кранов, лебедок, тельферов. Оператор не даст отдохнуть электромотору, а будет манипулировать им столько, сколько потребуется для выполнения работы по перемещению груза. То же происходит с электродвигателями металлообрабатывающих станков: при установке детали, подгонке ее положения и в процессе обработки требуется неоднократные запуски и остановки станка и изменения направления вращения.

Читать еще:  Что такое предпусковой обогреватель двигателя

Нагрузка на валу также не всегда остается постоянной. В технологических процессах нередки случаи работы электродвигателей с резкопеременной загрузкой. Есть продукт – двигатель загружен, закончился – работает в холостую.

Все это приводит к изменению во времени электрических характеристик электродвигателей: тока и мощности. Но главное – изменяется характер нагрева обмоток и магнитопроводов. Потери на нагрев обмоток называются мощностью потерь в меди, а железа магнитопроводов – мощностью потерь в стали. Первые происходят за счет выделения тепла на активном сопротивлении обмотки, вторые – нагрева вихревыми токами, возникающими под действием магнитного поля. Для снижения потерь от вихревых токов магнитопроводы изготавливают из пакета тонких пластин. Их изолируют друг от друга, покрывая лаком. Но полностью избавиться от вихревых токов невозможно.

Так как при запуске двигатель потребляет повышенный ток, то и мощность, рассеиваемая в виде потерь в стали и меди, в момент пуска возрастает. Если после запуска мотор продолжает работу с постоянной нагрузкой, то пусковой нагрев не успевает оказать существенного влияния на его температуру. Если же запуски происходят постоянно, то установившаяся температура становится больше той, что была бы в случае продолжительной работы.

Перегрев электродвигателя снижает срок службы изоляции обмоток и стальных листов магнитопровода. При изготовлении ее рассчитывают на определенную температуру, а при ее превышении изоляция быстрее теряет свои характеристики.

Повреждение изоляции обмотки статора

Другим фактором, влияющим на срок службы электродвигателя, является механические воздействия на его детали. На проводник с током в магнитном поле действует сила, стремящаяся его переместить, сдвинуть с места. Прохождение пускового тока через обмотки приводит к увеличению на них механических нагрузок. Усилие передается на элементы, фиксирующие обмотки в пазах статора и ротора, расшатывает их.

Механические усилия испытывают и другие элементы конструкции электродвигателя: вал ротора, места крепления магнитопроводов, подшипники.

Почему нельзя учесть все эти факторы и изготавливать все электродвигатели способными им противостоять? Все дело в стоимости. Для ровной и продолжительной работы электродвигатель можно изготовить дешевле. А для эксплуатации в тяжелых условиях потребуются дополнительные усиления конструкции, изоляции, что вызовет удорожание двигателя в целом.

Поэтому, помимо основных электрических характеристик, электродвигателям устанавливают типовые режимы работы. Обозначаются они сокращениями от S1 до S10, и для каждого из них есть свое описание.

Рассмотрим основные особенности каждого из них.

  1. S1 — продолжительный режим
  2. S2 — кратковременный режим
  3. S3 — повторно-кратковременный периодический режим
  4. S4 — режим S3 с пусками
  5. S5 — режим S3 с электрическим торможением
  6. S6 — непрерывный периодический режим с кратковременной нагрузкой
  7. S7 — режим S6 с электрическим торможением
  8. S8 — режим S6 с взаимозависимыми изменениями скорости вращения и нагрузки
  9. S9 — режим с непериодическими изменениями нагрузки и частоты вращения
  10. S10 — режим с дискретными постоянными нагрузками и скоростями вращения

S1 — продолжительный режим

Самый легкий и простой режим работы. Электродвигатель, будучи включенным, работает продолжительное время с неизменной нагрузкой. Он разогревается до рабочей температуры, после чего параметры работы не изменяются.

S2 — кратковременный режим

Электродвигатель включается на непродолжительное время и постоянную нагрузку. Времени работы недостаточно для того, чтобы был достигнут номинальный тепловой режим, а времени паузы после нее хватает, чтобы двигатель остыл практически до температуры окружающей среды.

В обозначение режима после S2 добавляется числовое значение продолжительности нагрузки в минутах.

S3 — повторно-кратковременный периодический режим

Последовательность режимов S2, повторяющихся с определенной частотой. При этом двигатель работает с неизменной нагрузкой, время покоя сменяется временем работы. То пуска не влияет на установившуюся температуру.

После обозначения S3 в маркировке указывается коэффициент циклической продолжительности включения (К=∆tр/Т) в процентах.

S4 — режим S3 с пусками

В этом режиме продолжительность работы становится соизмеримой с продолжительностью пуска. В результате цикл работы выглядит так: «пуск-работа-остановка». Он циклически повторяется.

Параметрами режима являются:

  • коэффициент К=∆tр/Т;
  • момент инерции двигателя (Jд), в кг∙м 2
  • момент инерции нагрузки (Jн), в кг∙м 2

Их значения указываются после знака S4.

S5 — режим S3 с электрическим торможением

По сравнению с предыдущим в цикл работы добавляется электрическое торможение, физический смысл которого – преобразование механической энергии вращения вала двигателя обратно в электрическую. При этом происходит отбор энергии от вала, и он быстрее останавливается.

Виды электрического торможения:

  • реверсивное (запуск вращающегося электродвигателя в обратную сторону);
  • реостатное (отключенная от сети обмотка статора подключается к тормозным резисторам);
  • рекуперативное (энергия вращающегося мотора заряжает аккумуляторы или отдается в сеть);
  • динамическое (отключенная от сети переменного тока отмотка статора подключается к источнику постоянного тока);
  • комбинации способов между собой.

После обозначения S5 указываются параметры, аналогичные режиму S4.

S6 — непрерывный периодический режим с кратковременной нагрузкой

Электродвигатель постоянно вращается, но циклически чередуется холостой ход и работа под нагрузкой.

Режим характеризуется коэффициентом К=∆tр/Т.

S7 — режим S6 с электрическим торможением

К режиму S6 добавляется торможение. Параметры те же, что и у S4.

S8 — режим S6 с взаимозависимыми изменениями скорости вращения и нагрузки

Как видно из названия, в этом режиме циклически изменяются нагрузка двигателя и частота его вращения. Причем эти два параметра связаны между собой. Измерение частоты вращения производится, например, путем изменения числа пар полюсов для асинхронных электродвигателей с короткозамкнутым ротором.

Читать еще:  Хорошее масло для двигателя умз 417

Параметры режима аналогичны S4, но приводятся для всех возможных частот вращения вала двигателя.

S9 — режим с непериодическими изменениями нагрузки и частоты вращения

Угловая скорость и нагрузка изменяются произвольным образом, при этом возможна работа с перегрузкой, превышающей базовую нагрузку.

S10 — режим с дискретными постоянными нагрузками и скоростями вращения

Режим характеризуется наличием большого числа дискретных постоянных нагрузок. Им соответствуют определенные частоты вращения вала двигателя.

Основные типы электрических передач тепловозов.

На тепловозах с электрической передачей тяговый (главный) генератор преобразует механическую энергию двигателя внутреннего сгорания в электрическую для питания тяговых электродвигателей.

Полученную от тягового генератора электрическую энергию электродвигатели вновь преобразуют в механическую энергию и приводят во вращение движущие колесные пары локомотива.

Такова в самых общих чертах схема электрической передачи тепловозов.

Кроме тяговых электрических машин, на тепловозах установлены различные дополнительные электрические генераторы и электродвигатели, электрические аппараты и устройства управления, автоматического регулирования работы отдельных агрегатов, защиты оборудования от недопустимых режимов работы.

Передача реализует заданную машинистом мощность дизель-генератора (в том числе и номинальную) при изменении скорости движения локомотива с поездом в зависимости от профиля пути и других условий.

С учетом веса поезда, профиля пути, допустимой скорости движения машинист тепловоза реализует различную мощность дизеля, обычно изменяя частоту вращения коленчатого вала посредством контроллера.

Повышение к.п.д. самой передачи также сокращает невосполнимые потери энергии, улучшает использование дизельного топлива, расходуемого тепловозом.

Уменьшение потерь в передаче тепловозов всего на 5% эквивалентно экономии в целом на железнодорожном транспорте более 100 тыс. т дизельного топлива в год стоимостью свыше 8 млн. руб.

В настоящее время к. п. д. электрической передачи тепловозов достигает 82—86% при работе на номинальной мощности.

Наиболее широкое распространение на отечественных тепловозах получила электрическая передача постоянного тока, в которой используются тяговые электрические машины только постоянного тока (рис. 129, а).

На тепловозах большой мощности в последние годы широко применяют электрическую передачу переменно-постоянного тока (рис. 129, б).

В передаче такого типа используются синхронный тяговый генератор переменного тока и тяговые электродвигатели постоянного тока.

Двигатели постоянного тока позволяют наиболее просто получить оптимальную тяговую характеристику тепловоза. Вырабатываемый синхронным тяговым генератором переменный ток выпрямляется, т. е. преобразуется в постоянный ток с помощью специальной выпрямительной установки.

Стремление упростить конструкцию тяговых электродвигателей, снизить их массу и стоимость, повысить надежность работы, свести к минимуму потребность в их обслуживании и ремонте привело к созданию для тепловозов передачи переменно-переменного тока (рис. 129, в). В такой передаче применяются и тяговый генератор, и тяговые электродвигатели переменного тока.

Асинхронные электродвигатели переменного тока значительно проще по конструкции, легче, дешевле электродвигателей постоянного тока такой же мощности.

В них отсутствуют коллектор и щеточный аппарат, которые ненадежны в эксплуатации, поэтому исключаются частые осмотры, снижаются затраты труда на обслуживание и ремонт.

Однако для регулирования скорости движения тепловоза с тяговыми электродвигателями переменного тока необходимо менять частоту тока, подводимого к двигателям.

Наиболее совершенные преобразователи частоты переменного тока, основанные на использовании управляемых полупроводниковых вентилей (тиристоров), остаются еще весьма сложными по конструкции и дорогими. Преобразование частоты тока связано с потерями энергии, что несколько снижает общий к.п.д. передачи.

Электрическими передачами постоянного тока оборудованы отечественные маневровые тепловозы ТЭ1, ТЭМ1, ТЭМ2, магистральные грузовые тепловозы ТЭЗ, М62, 2ТЭ10Л, 2ТЭ10В и пассажирские тепловозы ТЭП60 (рис. 130, а).

На каждой секции этих тепловозов установлено по одному тяговому генератору постоянного тока, приводимому в действие дизелем.

Секция тепловоза в соответствии с числом движущих колесных пар оборудована шестью тяговыми электродвигателями.

Каждый электродвигатель приводит во вращение через зубчатую передачу одну колесную пару локомотива. Мощность тягового генератора и тяговых электродвигателей определяется мощностью применяемых на тепловозах дизелей.

Так, номинальная мощность тягового генератора тепловоза ТЭ1 с дизелем мощностью 736 кВт (1000 л. с.) составляет 700 кВт, каждого тягового электродвигателя — 98 кВт.

Номинальная мощность генератора тепловозов типов ТЭ10, ТЭП60, оборудованных дизелями мощностью 2210 кВт (3000 л. с), соответственно увеличена до 2000 кВт, а тягового электродвигателя —- до 305 кВт.

Электрическая передача переменно-постоянного тока получила применение на грузовых тепловозах 2ТЭ116, 2ТЭ121, пассажирских тепловозах ТЭП70 и ТЭП75, а также на экспортных тепловозах ТЭ109 (рис. 130, б).

Каждая секция этих тепловозов оборудована синхронным тяговым генератором переменного тока и шестью тяговыми электродвигателями постоянного тока.

Переменный ток, вырабатываемый синхронным генератором, преобразуется в постоянный (с незначительной пульсацией) с помощью выпрямительной установки, которая собрана из силовых полупроводниковых (кремниевых) вентилей.

Переход на тяговые генераторы переменного тока вызван ограниченными возможностями увеличения мощности тепловозных генераторов постоянного тока.

Как показал опыт постройки и эксплуатации новых тепловозов, генераторы переменного тока обладают и целым рядом других достоинств — имеют меньшую массу, надежнее в эксплуатации, проще в обслуживании и ремонте.

Даже с учетом необходимости применения достаточно дорогих по стоимости выпрямительных установок использование генераторов переменного тока является, безусловно, оправданным на тепловозах с дизелями мощностью 2210— 2940 кВт (3000—4000 л. с.) и более.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector