0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрический двигатель переменного тока для постоянной работы

Устройство электродвигателей переменного тока

При помощи электродвигателей переменного тока происходит конвертация электроэнергии в механическую. Бывают моторы переменного и постоянного тока. У них есть много отличий, особенно в конструкции. В промышленности большое распространение получили электродвигатели, работающие на переменном токе. Их можно встретить как в бытовых приборах, так и в промышленности. Они встречаются везде — в стиральных машинах, автомобилях, перфораторах, болгарках, производственных станках.

Как работает электродвигатель?

Функционирование электромоторов напрямую зависит от законов Ампера и электромагнитной индукции Фарадея. Закон Фарадея гласит, что на замкнутых проводниках, которые расположены в магнитном поле, генерируется ЭДС. В моторах поле создается обмотками статора, именно по ним проходит переменный электрический ток. Трехфазные электрические двигатели переменного тока работают именно по этим законам.

Закон Ампера описывает вращение ротора внутри статора. Когда по проводнику протекает электрический заряд, при условии, что воздействует магнитное поле, появляется электродвижущая сила. Причём эта движущая сила направлена перпендикулярно силовым линиям поля. При этом ротор, установленный по центру двигателя на подшипниках, начинает вращаться.

Асинхронный двигатель

В промышленности огромную популярность завоевали асинхронные электродвигатели переменного тока. Они очень неприхотливые, отдают высокую мощность, надежны. Устройство электродвигателя переменного тока асинхронного типа состоит из нескольких частей:

  1. Неподвижная часть — статор, имеет цилиндрическую форму. Выполнен из стальных листов с пазами, в которые укладываются обмотки. Оси обмоток расположены под углом 120 градусов друг к другу. Все края обмоток выводятся в коробку, расположенную сверху мотора. Всего шесть выводов, которые можно соединить по схеме «звезда» или «треугольник». Зависит от того, какие параметры у электропривода.
  2. Чаще всего используется короткозамкнутый ротор. Конструкция его называется «беличья клетка» за внешнее сходство. В ней имеется несколько стержней из меди или алюминия, которые коротко замкнуты при помощи металлических колец на торцах.
  3. Фазный ротор немного иной конструкции. На нем укладывается три обмотки, напоминающие те, которые расположены в статоре. Края всех обмоток выводятся в коробку, где производится их соединение. При помощи фазного ротора можно добавить в цепь питания обмотки резистор, способный менять сопротивление. Это позволяет уменьшить силу тока при запуске.

Обязательно на асинхронном электродвигателе устанавливается крыльчатка, которая позволяет охлаждать обмотки, две крышки, подшипники, коробка, вал.

Как работает асинхронник?

Функционирует асинхронный электрический двигатель по законам электромагнитной индукции. ЭДС возникает в том случае, когда у магнитного поля обмоток статора и ротора разная скорость вращения. В случае, если эти параметры были бы одинаковы, электродвижущая сила не смогла бы сгенерироваться. Но так как на ротор воздействуют тормозящие факторы, например, трение и нагрузка со стороны подшипников, то всегда будут благоприятные условия для работы устройства.

Синхронные электродвигатели

Однофазные электродвигатели переменного тока синхронного типа получили широкое распространение. Конструкция у таких моторов немного отличается от рассмотренной выше. В них ротор вращается с такой же скоростью, с какой движется магнитное поле обмоток статора. А на якоре имеются обмотки, соединенные с коллектором. Конструкция контактных площадок выполнена так, что в один момент времени питание подается при помощи графитовых щеток только на пару противоположных ламелей.

Следовательно, запитана только одна обмотка на роторе. Подобные коллекторные электродвигатели переменного тока получили широкое распространение в бытовой технике. Например, в электроинструментах, стиральных машинах, двигателях привода компрессоров кондиционеров или холодильников.

Как работает синхронный электродвигатель?

Всего можно выделить несколько этапов работы асинхронного электродвигателя:

  1. Возникновение вращающего момента происходит, как только начинают взаимодействовать магнитный поток в статоре и электрический ток в роторе.
  2. Магнитный поток изменяет направление своего движения. Причём происходит это одновременно с реверсом тока. При помощи такого поведения получается сохранить вращение ротора в одном направлении.
  3. Чтобы добиться необходимой частоты вращения ротора, достаточно произвести регулировку питающего напряжения. Во многих бытовых приборах используется для этой цели простой реостат, который изменяет свое сопротивление.

Конструкция синхронного двигателя весьма ненадежная, так как очень часто изнашиваются графитовые щетки, либо ослабляются их пружины. При разрушении подшипников на валу появляется характерный неприятный звук. Со временем загрязняются ламели на коллекторе. Их можно очистить при помощи наждачной бумаги или спиртосодержащими растворами.

Особенности диагностики синхронных двигателей

Чтобы осуществить проверку электродвигателя, необходимо полностью обесточить инструмент и разобрать его. Если имелось короткое замыкание, то внутри изоляционный материал начнёт оплавляться, и появится неприятный запах. Поэтому первым делом необходимо понюхать ротор. Если нет признаков поломки, то проверьте на якоре состояние ламелей. Делается это при помощи мультиметра.

Переключаете его в режим измерения сопротивления с порогом 200 Ом. Прозвоните все соседние ламели. Если сопротивление меняется, то это говорит о том, что внутри катушки имеется поломка. Вместо мультиметра можно использовать простую лампу накаливания. Для этого необходимо подключить электродвигатель к источнику питания 12 Вольт, в разрыв установить лампу накаливания. Вращая вал рукой, необходимо посмотреть на поведение лампы.

В случае если лампа начинает моргать, это говорит о наличии межвиткового замыкания. Если же она совсем не горит, то имеется обрыв в цепи питания, либо неисправна одна из ламелей. Чтобы проводить ремонт, необходимо заменить обмотку и установить новую изоляцию. Только в этом случае двигатель не перегорит. Обязательно после ремонта проведите испытание электродвигателя переменного тока. Для увеличения ресурса мотора обязательно нужно проводить перемотку ротора каждые два года.

Преимущества и недостатки моторов, работающих на переменном токе

Большую популярность приобрели трехфазные электродвигатели переменного тока асинхронного типа. В промышленности их доля составляет более 95%. Но у них имеется недостаток — изменение частоты вращения можно производить только лишь путем регулировки частоты электрического тока. Для этого используются частотные преобразователи, стоимость которых довольно высокая. При изменении частоты вращения снижается, причем существенно, мощность электродвигателя. У асинхронников очень высокий пусковой ток, а момент при старте крайне низкий. Но можно также применять редукторы, чем-то похожие на автоматическую коробку передач, используемую в автомобилях.

У синхронных моторов имеется один большой недостаток — это его конструкция. Щетки из графита очень быстро разрушаются под действием нагрузки, в результате чего теряется контакт. У них также могут выходить из строя подшипники, разрушаться обмотки, а их вдвое больше, нежели у асинхронных машин. Запустить синхронную машину намного сложнее, нежели асинхронную. Поэтому в промышленности они большого распространения не получили. Да и асинхронник способен дольше работать под большими нагрузками, не испытывая «дискомфорт».

Подключение к трехфазной сети питания

Всего имеется две схемы, по которым соединяются обмотки трехфазных электрических двигателей:

  1. «Звезда» — крайне низкие пусковые токи, но добиться высокой мощности в этом случае вряд ли получится.
  2. «Треугольник» — пусковой ток очень высокий, поэтому использование такой схемы рекомендуется при работе в устоявшемся режиме.

Подключить асинхронный двигатель к сети переменного тока с трехфазным напряжением очень просто.

Для этого в клеммной коробке необходимо соединить шесть выводов обмоток. Но если вы произведете подключение неверно, то обмотки расплавятся. Потребуется проводить ремонт электрической машины. Синхронные машины намного сложнее подключить, так как необходимо правильно соединить обмотки ротора из статора.

Подключение трехфазного двигателя в однофазную сеть

Для того чтобы произвести подключение трехфазного асинхронного двигателя в бытовую сеть, лучше всего воспользоваться конденсаторами. С их помощью можно произвести сдвиг по фазе питающего напряжения. Таким образом, вы получите третью дополнительную фазу, необходимую для запуска и работы электродвигателя. Если нужно запускать мотор мощностью до 1,5 кВт, то достаточно применять один рабочий конденсатор. Если же мощность свыше 1,5 кВт, то параллельно ему потребуется включать еще один посредством выключателя. Он должен работать только несколько секунд, пока двигатель не запустится. Так запускаются электродвигатели переменного тока 220В и 380В от бытовой сети.

Читать еще:  Датчик температуры двигателя снегоход буран

Однофазные электродвигатели 220в: особенности подключения

В наше время трудно найти человека, который бы не знал что такое однофазный электродвигатель. Однофазные электродвигатели 220 в выпускаются серийно уже довольно много лет. Они востребованы в сельском хозяйстве, быту человека, на производстве, в частных и государственных мастерских. Однофазные двигатели 220 В пользуются высокой популярностью.

Общие понятия

Асинхронный двигатель 220 вольт, однофазный, требует питания переменным электрическим током, сеть для подключения такого агрегата должна быть однофазной. Однофазные двигатели 220 в работают при напряжении в сети 220 вольт, частоте 50 герц. Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, дачах, коттеджах, по всей территории России, а в США напряжение в бытовой электрической сети составляет 110 вольт. На производстве же в нашей стране сетевое напряжение имеется однофазное, трёхфазное, и другие виды электрических сетей.

Применение однофазных моторов

Такой тип моторов применяют для работы устройств с малой мощностью.

  1. Бытовая техника.
  2. Вентиляторы небольшого размера.
  3. Электронасосы.
  4. Станки, предназначенные для обработки сырья.

Заводы производят электродвигатели однофазные 220 В малой мощности различных моделей, с разным числом оборотов и мощностью. Стоит отметить, что однофазные моторы уступают трёхфазным в нескольких параметрах.

  1. Эти моторы имеют меньшие значения КПД.
  2. Пускового момента.
  3. Мощности.
  4. Способность выдерживать перегрузку у трёхфазных электромоторов выше, чем у однофазных.

Эти параметры меньше при условии, когда трёхфазные моторы имеют такой же размер.

Устройство электродвигателя

Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.

  1. Статор, или неподвижная часть мотора.
  2. Ротор, или подвижная (вращающаяся) часть мотора.

Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.

Пусковая катушка

Для того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя. Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы. В качестве фазосдвигающего звена могут выступать несколько средств.

  1. Активный резистор.
  2. Конденсатор.
  3. Катушка индуктивности.

Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.

Двух и трёхфазные моторы

Существует возможность 2 или 3-фазный мотор подключить к однофазному источнику питания. Иногда по ошибке такие моторы называют однофазными. Это заблуждение, правильно будет называть это «двух (или трёх) фазный электромотор, подключённый в однофазную сеть питания переменного тока». Просто подключить двух или трёхфазный мотор в однофазную сеть не получится. Нужна схема согласования.

Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.

Принцип действия

Переменный электроток создаёт магнитное поле в статоре, которое имеет два поля, они одинаковы по амплитуде, частоте, но разнонаправленны. Эти поля воздействуют на неподвижный ротор, и, вследствие того, что поля разнонаправленны, ротор начинает вращение. При отсутствии в моторе пускового механизма, то ротор будет стоять на месте. Ротор, начав вращение в одну сторону, будет вращаться далее в этом же направлении.

Запуск мотора

Посредством магнитного поля производится запуск мотора, магнитное поле, воздействуя на ротор, принуждает его вращаться. Создают магнитное поле главная и дополнительная катушки, пусковая имеет меньший размер, подключается она к дополнительной через конденсатор, катушку индуктивности или активный резистор.

Если мотор низкой мощности, пусковая фаза замкнута. Чтобы запустить такой двигатель, подключать электричество к пусковой катушке можно лишь временно, не более чем на три секунды. Для этого существует пусковая кнопка. Кнопка вставлена в пусковое устройство.

Когда происходит нажатие пусковой кнопки, происходит подача электроэнергии на рабочую и на пусковую катушку одновременно, двигатель в эти первые секунды запуска работает как двухфазный, но через три секунды ротор уже набрал обороты, мотор запустился, и кнопка отпускается. Прекращается подача электроэнергии на пусковую катушку, но подача электричества на рабочую обмотку не прекращается, так устроено пусковое устройство, затем устройство работает уже как однофазное.

Важно помнить, что не следует долго держать пусковую кнопку, так как пусковая катушка может перегреться и выйти со строя, она рассчитана на работу несколько секунд. Для обеспечения безопасности в корпусе однофазного силового агрегата может быть встроено тепловое реле, центробежный выключатель. Центробежный выключатель устроен таким образом, что когда ротор набрал обороты, центробежный выключатель выключается сам, без вмешательства человека. Пусковой ток однофазного двигателя выше рабочего, после запуска ток снижается до уровня рабочего. Схему подключения однофазного двигателя смотрите здесь.

Тепловое реле

Тепловое реле действует следующим образом: при нагревании обмоток до установленного на реле предела, реле производит прекращение подачи электроэнергии на обе фазы, таким образом, исключается выход из строя при перегрузке или другой причине, это не даст возникнуть пожару.

Достоинства

К положительным качествам такого мотора можно отнести простоту его устройства, ротор в этой конструкции короткозамкнутый, обмотка статора не представляет собой большой сложности.

Недостатки

Кроме достоинств, в этом моторе имеются и некоторые недостатки.

  1. Невысокий пусковой момент мотора.
  2. Низкий КПД электродвигателя.
  3. Электродвигатель не способен генерировать магнитное поле, которое выполняет вращение.

По этой причине такой двигатель сам не может начать вращение. Дело в том что для того, чтобы мотор начал вращение, он должен иметь не менее двух обмоток, а следовательно, и двух фаз, но мотор имеет одну фазу изначально, таково его устройство. Кроме наличия двух фаз, требуется чтобы одна обмотка была смещена по отношению к другой на определённый угол.

Подключение двигателя

Подключать двигатель нужно в однофазную сеть переменного напряжения 220 вольт, частотой 50 герц. Эти номиналы электроэнергии имеются во всех жилых помещениях нашей страны, и вследствие этого однофазные моторы имеют огромную популярность. Они установлены во всей бытовой технике, такой как.

  1. Холодильник.
  2. Пылесос.
  3. Соковыжималка.
  4. Триммер.
  5. Кусторез электрический.
  6. Швейная машинка.
  7. Электродрель.
  8. Миксер кухонный.
  9. Вентилятор.
  10. Насос водяной.

Разновидности подключения

  1. Подключение с пусковой катушкой.
  2. Подключение с рабочим конденсатором.

Электродвигатели однофазные 220 В малой мощности с пусковой катушкой имеют включённый в цепь конденсатор во время старта. После разгона ротора катушка отключается. Если мотор сделан с рабочим конденсатором, цепь пуска не размыкается, идёт постоянная работа пусковой обмотки через конденсатор.

Существует возможность использовать один электромотор для разных целей. Один и тот же мотор можно снять с одной техники и установить на другую. Включать однофазный двигатель можно тремя схемами.

  1. Происходит временное включение электричества на пусковую обмотку через конденсатор.
  2. Происходит кратковременная подача напряжения на пусковое устройство через резистор, без конденсатора.
  3. Электричество подаётся через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.
Читать еще:  Шум в двигателе ваз 21074 причины

При использовании в цепи пуска резистора, обмотка будет иметь активное сопротивление выше. Произойдёт сдвиг фаз, достаточный для начала вращения. Можно использовать пусковую обмотку, в которой большее сопротивление и меньшая индуктивность. Чтобы обмотка соответствовала своим параметрам, она должна иметь меньше витков, тоньше провод.

Конденсаторный пуск представляет собой подключение конденсатора к пусковой обмотке и временную подачу электроэнергии. Чтобы достичь максимального значения момента пуска, нужно круговое магнитное поле, оно должно выполнить вращение. Для этого нужно расположение обмоток под углом 90 градусов. Такого сдвига резистором добиться невозможно. Если ёмкость конденсатора рассчитать правильно, то удастся сдвинуть обмотки под угол 90 градусов.

Вычисление принадлежности проводов

Чтобы вычислить провода, подключающие пусковую обмотку и рабочую, нужно иметь прибор, измеряющий омы или тестер. Нужно замерять сопротивления обмоток. Сопротивление рабочей обмотки должно быть меньше, чем пусковой. Например, если замеры показали у одной обмотки 12 Ом, а у другой 30 Ом, то первая из них рабочая, а вторая пусковая. Рабочая обмотка будет иметь большее сечение чем пусковая.

Подборка ёмкости конденсатора

Чтобы подобрать ёмкость конденсатора, нужно знать, какой ток потребляет электромотор. Если он потребляет ток 1,4 ампера, то нужен конденсатор, ёмкость которого составляет 6 микрофарад.

Проверка работоспособности

Начать проверку следует с визуального осмотра.

  1. Если у агрегата была отломана опора, то вследствие этого он тоже мог работать плохо.
  2. В случае если потемнел корпус посередине, это говорит о том что он чрезмерно перегревался.
  3. Возможно, что в разрез корпуса попали разные посторонние вещи, это будет замедлять его и способствовать перегреву.
  4. Если подшипники загрязнены, будет происходить перегревание.
  5. Износ подшипников будет причиной перегревания.
  6. Если к пусковой обмотке 220v подключён конденсатор завышенной ёмкости, то он будет перегреваться. При подозрении на конденсатор нужно отключить его от пусковой обмотки, включить двигатель в сеть, вручную прокрутить вал, произойдёт запуск и начнётся вращение. Нужно дать мотору поработать около пятнадцати минут, затем проверить, не нагрелся ли он. Если мотор не нагрелся, то причина была в повышенной ёмкости конденсатора. Нужно установить конденсатор меньшей ёмкости.

Электродвигатели однофазные 220 в малой мощности выпускаются совершенно разных моделей и для разных целей, и, прежде чем купить изделие, нужно чётко понимать, какова нужна мощность, тип крепления, количество оборотов в минуту, и прочие характеристики.

Электродвигатели переменного и постоянного тока

Электродвигатели предназначены для того, чтобы привести в движение некоторый механизм: насос, вентилятор, мельницу, конвейер, лифт и т. д. Полезную механическую работу электродвигатель совершает за счёт потребляемой из сети электроэнергии.

Принцип действия любого электродвигателя основан на законе, согласно которому на проводник с током, помещенный в магнитное поле, действует сила Ампера. В зависимости от способа создания магнитного поля и рода тока электродвигатели можно разделить на двигатели постоянного тока и двигатели переменного тока, которые в свою очередь делятся на синхронные и асинхронные.

Двигатели постоянного тока работают следующим образом. Электроэнергия подаётся в обмотку ротора от неподвижного источника постоянного тока через коллекторно-щёточные контакты. В обмотку статора также подаётся постоянный ток для создания магнитного поля. На обмотку ротора, помещенную в магнитное поле, действует сила Ампера. Ротор вращается. Как уже было сказано, двигатели постоянного тока на электростанциях имеют ограниченное применение.

Принцип действия синхронного электродвигателя переменного тока следующий. В обмотку статора подаётся трёхфазный переменный ток, за счёт которого внутри двигателя создаётся вращающееся магнитное поле. В обмотку ротора подаётся постоянный ток от возбудителя. Возникшая сила Ампера действует на обмотку и вращает ротор с той же частотой, с какой вращается магнитное поле статора. Синхронные электродвигатели переменного тока также не получили значительного распространения на электростанциях. В виде исключения они используются для привода мельниц, где не требуется особой надежности электроснабжения и допускаются большие перерывы питания. Синхронные электродвигатели имеют следующие недостатки:

сложная конструкция, необходим возбудитель;

сложные условия эксплуатации;

сложные условия пуска и самозапуска;

трудности регулирования частоты вращения;

Асинхронные электродвигатели получили настолько большое распространения в схемах собственных нужд электростанций, что на них следует остановиться особо.

Асинхронные электродвигатели с короткозамкнутым ротором

Рассмотрим принцип действия асинхронного электродвигателя с короткозамкнутым ротором. Как и в случае синхронного двигателя, в обмотку статора асинхронного двигателя подаётся трёхфазный переменный ток, за счёт которого внутри двигателя создаётся вращающееся магнитное поле. Но в отличие от синхронного, в данном типе двигателя в обмотку ротора не подаётся постоянный ток. Обмотка ротора замкнута накоротко и представляет собой так называемую «беличью клетку». В этой обмотке за счёт вращающегося поля статора по закону Фарадея индуцируются переменные токи. Механизм возникновения этих токов – такой же, как и во вторичной обмотке трансформатора с той лишь разницей, что здесь вторичная обмотка вращается.

Вращающееся магнитное поле статора и переменные токи в роторе обусловливают возникновение силы Ампера. Обмотка ротора и сам рот приходят во вращение. При этом ротор несколько запаздывает относительно скорости вращения поля статора. По этой причине двигатель назван асинхронным. Степень этого запаздывания называется скольжением и рассчитывается по формуле:

где nсх – синхронная частота вращения магнитного поля статора;

n – частота вращения ротора.

Синхронная частота вращения магнитного поля статора в свою очередь определяется по той же формуле, что и для синхронного генератора:

nсх = 60f/p,

где р – число пар полюсов ротора.

Причина запаздывания ротора относительно поля статора объясняется законом электромагнитной индукции Фарадея, согласно которому индукционный ток возникнет только в том случае, если будет изменяться магнитный поток. Если же, чисто гипотетически, ротор догонит поле статора и их скорости сравняются, то обмотка ротора относительно вектора магнитной индукции статора окажется неподвижной, а значит и магнитный поток перестанет изменяться во времени. При этом ток в обмотке ротора исчезнет, следовательно, станет равной нулю сила Ампера и ротор замедлит своё вращение. И наоборот – небольшое проскальзывание ротора относительно поля статора – важнейшее условие для существования вращающей силы.

Основные преимущества использования асинхронных электродвигателей (АЭД) с короткозамкнутым ротором заключаются в следующем.

1. АЭД допускают прямой пуск от полного напряжения питающей сети безо всякой пускорегулирующей аппаратуры, которую приходится применять в случае синхронных двигателей.

2. Группа АЭД одной или нескольких секций успешно самозапускаются после кратковременного обесточивания и последующего восстановления питания в результате действия станционной автоматики.

3. Для АЭД не требуется возбудителя. Поэтому они дешевле и относительно просты в эксплуатации.

4. Регулировать скорость вращения АЭД можно не только со стороны статора, но и со стороны ротора. Для сравнения, в отличие от АЭД, скорость вращения синхронных двигателей жёстко связана с электрической частотой сети.

При этом АЭД имеют недостатки, перечисленные ниже.

1. Вследствие больших пусковых токов в элементах системы электроснабжения возникают значительные падения напряжения, и групповой пуск и самозапуск происходит при пониженных напряжениях на секциях.

Читать еще:  Jetta стуки двигателя на холодную

2. Синхронная частота вращения АЭД не может превышать 3000 об/мин. Для получения более высоких скоростей необходимо использовать повышающий редуктор или турбопривод.

3. Максимальная номинальная мощность асинхронных электродвигателей составляет 8 МВт. При необходимости создания более мощного привода приходится использовать синхронный двигатель или турбопривод.

4. Регулирование скорости вращения АЭД имеет дорогостоящую и сложную реализацию по сравнению с регулированием с помощью двигателя постоянного тока или турбопривода.

5. При возникновении короткого замыкания вблизи шин с работающими двигателями, появляется значительная подпитка тока от АЭД.

6. АЭД чувствительны к провалам напряжения из-за того, что их электромагнитный момент обладает квадратичной зависимостью от напряжения Ме

U 2 . Для синхронного двигателя эта зависимость линейна: Ме

7. Изменение электромагнитных моментов асинхронных электродвигателей с короткозамкнутым ротором происходит при изменении не только напряжения, но и частоты.

С точки зрения использования электропривода механизмов собственных нужд электростанций основные недостатки АЭД проявляются в наибольшей степени для питательных и бустерных насосов. Поэтому на мощных блоках для этой цели применяют турбопривод.

Дата добавления: 2016-06-15 ; просмотров: 5617 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Замена двигателей постоянного тока на асинхронные двигатели переменного тока

Промышленные двигатели постоянного тока начали выпускаться в 1860—1870 гг., чему предшествовал 30-летний период их разработки после фундаментальных открытий М. Фарадея (закона электромагнитной индукции и превращения электрической энергии в механическую).

Двигатели постоянного тока широко применяются и в наше время благодаря использованию современных тиристорных преобразователей, которые позволяют осуществлять регулирование скорости данных двигателей путем изменения напряжения на якоре или в обмотках возбуждения. Для расширения диапазона регулирования скорости используются различные сигналы обратной связи (напряжение на якоре, тахогенераторы и т.д.). Однако эксплуатация двигателей постоянного тока влечет за собой ряд значительных неудобств, связанных с конструктивными особенностями машин данного типа, а именно:

1. Сложность конструкции и, как результат, высокая цена
2. Наличие щеточно-коллекторного узла
3. Большая масса
4. Необходимость в периодическом обслуживании

Промышленные двигатели постоянного тока начали выпускаться в 1860—1870 гг., чему предшествовал 30-летний период их разработки после фундаментальных открытий М. Фарадея (закона электромагнитной индукции и превращения электрической энергии в механическую).

Двигатели постоянного тока широко применяются и в наше время благодаря использованию современных тиристорных преобразователей, которые позволяют осуществлять регулирование скорости данных двигателей путем изменения напряжения на якоре или в обмотках возбуждения. Для расширения диапазона регулирования скорости используются различные сигналы обратной связи (напряжение на якоре, тахогенераторы и т.д.). Однако эксплуатация двигателей постоянного тока влечет за собой ряд значительных неудобств, связанных с конструктивными особенностями машин данного типа, а именно:

1. Сложность конструкции и, как результат, высокая цена
2. Наличие щеточно-коллекторного узла
3. Большая масса
4. Необходимость в периодическом обслуживании

Все эти недостатки требуют существенных затрат при покупке машин постоянного тока и их дальнейшей эксплуатации, а так же они могут значительно снизить надежность и точность систем в целом. Необходимо планировать дополнительные планово-предупредительные работы и останавливать производство для обслуживания щеточно-коллекторных узлов и проводить периодическую продувку машин от пыли.

До недавнего времени внедрение асинхронных двигателей (АД) с короткозамкнутыми роторами в системы, где требуется широкий диапазон регулирования скорости, не представлялось возможным, а для изменения скорости движения приводимых механизмов использовались переключаемые редукторы или вариаторы. Дальнейшим развитием таких систем стало появление асинхронных двигателей с переключением числа полюсов (двух и трех скоростные двигатели), что позволяло ступенчато изменять скорость вращения.

С развитием полупроводниковой электроники (разработка IGBT транзисторов), появилась возможность производства недорогих микропроцессорных преобразователей частоты, с помощью которых стало возможным полноценно управлять скоростью асинхронных двигателей в широком диапазоне регулирования (1:1000). Теперь частота вращения АД не зависит от частоты питающей сети, двигатели можно разгонять выше их номинальной скорости. Так же появилась возможность управления моментом асинхронных двигателей. Системы управления движением с использованием асинхронных двигателей и преобразователей частоты, получаются дешевле и проще подобных систем с двигателями постоянного тока. В качестве датчиков обратной связи широко используются цифровые устройства (энкодеры), которые менее подвержены влиянию электромагнитных помех, чем тахогенераторы, классически используемые с машинами постоянного тока.

Асинхронный двигатель – простая, недорогая, не требующая обслуживания машина. Именно эти аргументы привели к тому, что на многих предприятиях машины постоянного тока с тиристорными преобразователями стали заменять на асинхронные двигатели с системами управления, построенными на преобразователях частоты.

При подборе асинхронного двигателя взамен машины постоянного тока необходимо учитывать разность характеристик этих машин. Подбор двигателя осуществляется по следующим параметрам:

1. По номинальной скорости вращения

Диапазон изменения частоты вращения вала асинхронного двигателя должен быть равен или больше чем у двигателя постоянного тока.

2. По моменту (номинальному, пусковому, максимальному)

Номинальный момент асинхронного двигателя должен быть равен или быть больше исходного при условии длительной работы в заданном диапазоне частот вращения без перегрева. Максимальный и пусковой моменты должны быть равны или быть больше пускового момента определенного для данного механизма.

На рисунке 1 и 2 представлены механические характеристики асинхронного двигателя и двигателя постоянного тока соответственно. Как видно, на малых скоростях асинхронный двигатель имеет момент значительно меньше номинального в отличие от двигателя постоянного тока. Поэтому при замене двигателя постоянного тока необходимо однозначно определить диапазон скорости вращения вала и требуемый момент в этом диапазоне. Как правило, для удовлетворения механических характеристик приводного механизма, приходится ставить асинхронный двигатель большей мощности.

Рис.1 Механическая характеристика асинхронного двигателя

Рис.2 Механическая характеристика двигателя постоянного тока

3. По режиму работы

Нагрев электрической машины зависит от режима ее работы, т.е. от соотношения длительности периодов работы и пауз между ними, или периодов работы с полной или частичной нагрузкой, от частоты включения машины и характера протекания переходных процессов.

Подразделяют следующие режимы работы:

Продолжительный режим (S1) — режим при котором время работы машины при практически неизменных нагрузке и температуре окружающей среды достаточно для нагрева всех ее частей до практически установившейся температуры. Режим характеризуется неизменными потерями в течение всего времени работы машины.

Кратковременный режим (S2) — режим при котором периоды неизменной нагрузки чередуются с периодами отключения машины, причем за время работы температура частей машины не успевает достигнуть установившегося значения, а за время пауз машина охлаждается до холодного состояния.

Повторно-кратковременный режим (S3-S8) — отличается от кратковременного регламентированными продолжительностью включения под неизменную нагрузку и продолжительностью периодов отключения, причем время работы машины всегда меньше времени, необходимого для нагрева ее частей до установившейся температуры, а время пауз меньше необходимого для остывания машины до практически холодного состояния. Отличие между режимами S3-S8 заключается частотой пусков и продолжительностью включения машины.

4. По условиям эксплуатации

Согласно ГОСТ 17498-87 асинхронный двигатель должен иметь соответствующую степень защиты IPXX, где первый символ X означает степень защиты оболочкой, от проникновения инородных твердых тел, второй символ X означает степень защиты оболочкой от вредных воздействий проникающей воды. Например, IP54 — “Машина не полностью защищена от проникновения внутрь оболочки пыли (однако, пыль не может проникать в количестве, достаточном для нарушения работы изделия) и воды, разбрызгиваемой на оболочку в любом направлении”.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector