5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронная схема которая управляет работой двигателя

Электронная схема которая управляет работой двигателя

Во время эксплуатации автомобиля двигатель подвергается серьезным нагрузкам. Продлить срок службы мотора позволяет подбор оптимального режима работы. Найти компромисс между экономичным расходом топлива и сохранением скоростных характеристик автомобиля призвана электронная система управления двигателем или сокращенно ЭСУД. Кроме того, данная система обеспечивает высокий ресурс надежности всех агрегатов и поддерживает соответствующий уровень токсичности выхлопа.

«Мозгом» этой системы является контроллер. Во-первых, он обеспечивает функционирование всех элементов ЭСУД в безопасном режиме. Во-вторых, схема контроллера двигателя выполнена таким образом, что он прямо на ходу может менять набор переменных в программе, тем самым улучшая работу инжекторного двигателя при выбранном режиме.

Назначение и функции электронной системы управления

Электронное управление современного двигателя состоит из контроллера управления двигателем (электронный блок управления ЭБУ), датчиков, различных исполнительных и вспомогательных устройств (реле).

В функции ЭСУД входит управление исполнительными элементами (топливной системой, модулем зажигания, регулятором холостого хода, адсорбером и электробензонасосом); вывод данных на приборную панель; контроль уровня токсичности выхлопных газов; обеспечение взаимодействия с другими системами управления автомобиля, в том числе и с противоугонной (иммобилайзером).

Основная задача ЭСУД заключается в контроле над впрыском топлива и последующим смесеобразованием. Для этой цели электронный блок управления обрабатывает информацию, поступающую от семи датчиков:

  • датчик положения коленчатого вала;
  • датчик моментального расхода воздуха;
  • датчик температуры охлаждающей жидкости;
  • датчик положения дроссельной заслонки;
  • датчик кислорода;
  • датчик детонации;
  • датчик скорости.

Схема электронного контроллера обрабатывает поступающие данные и позволяет проводить перепрограммирование системы, улучшая эксплуатационные характеристики мотора при выбранном режиме функционирования (мощный, экономичный, режим холостого хода).

Разновидности контроллеров управления двигателем

Классификация электронных блоков управления осуществляется в зависимости от наличия набора функций, подобранных для конкретного автомобиля. Условное же деление происходит на объединенные блоки и блоки управления двигателем.

Компоненты объединенного блока подчиняются одному компьютеру. В состав такого блока входят несколько модулей:

  • центральный;
  • моторно-трансмиссионный;
  • контроля тормозной системы;
  • контроллер кузова;
  • контроля подвески;
  • синхронизационный.

У каждого вида контроллеров есть свои достоинства и недостатки. Преимущество использования объединенного блока заключается в удобстве монтажа — к компьютеру уже подходят провода со всех датчиков и элементов.

Однако возникновение неполадок в работе ЭБУ влечет за собой отказ всех управляемых им элементов. Выбор блока управления двигателем исключает такую возможность, но усложняет процесс прокладки и компоновки проводов, идущих от разных компьютеров.

Устройство и принцип работы контроллера двигателя

Главным элементом ЭСУД является контроллер (ЭБУ). Он состоит из микропроцессора, формирователей входных и выходных сигналов и источника питания, заключенных в металлический корпус. К разъемам блока управления подведен жгут проводов от всех подконтрольных устройств и электрической сети автомобиля.

Схема стандартных контроллеров двигателей обеспечивает высокую надежность системы, за счет используемых компонентов. По сути, электронный блок управления является мини-компьютером, использующим три типа памяти:

  • постоянное запоминающее устройство (ПЗУ);
  • оперативное запоминающее устройство (ОЗУ);
  • электрически репрограммируемое постоянное запоминающее устройство (ЭРПЗУ).

В постоянной памяти хранятся различные алгоритмы действий и калибровочные данные (набор переменных рабочей программы). Информация, находящаяся в ПЗУ, не стирается при отключении питания и поддается перепрограммированию.

В оперативной памяти временно содержатся переменные рабочие данные, а также вся информация о неисправностях. Показания с ОЗУ высвечиваются на приборной панели. Как и в случае с обычным персональным компьютером, при отключении контроллера оперативная память стирается.

ЭРПЗУ хранит временные коды-пароли иммобилайзера. Пуск двигателя осуществляется только при совпадении данных ЭРПЗУ и противоугонной системы. Таким образом, злоумышленник имеет минимум возможностей для запуска силового агрегата автомобиля.

Формирователи входных сигналов ослабляют и адаптируют поступающие сигналы для микропроцессора, а также защищают его от перенапряжения. Формирователи выходных сигналов увеличивают мощность сигналов, направленных к исполнительным устройствам и, защищают контроллер от перегрузки.

Принцип работы контроллера двигателя

В процессе эксплуатации автомобиля контроллер управляющий обычным двигателем собирает информацию с электронных датчиков, расположенных на исполнительных устройствах.

Компьютер анализирует полученные данные, обрабатывает и, в соответствии с выбранным алгоритмом действий, посылает команды электробензонасосу, топливной системе, модулю зажигания, адсорберу и регулятору холостого хода. После окончания работы контроллер завершает вычисления и проводит подготовку к следующему пуску.

Дополнительно электронный блок управления производит самодиагностику всех узлов машины. При обнаружении неполадок в работе информация о неисправности выводится на приборную панель в виде соответствующего светового индикатора. Диагностические коды неисправностей, хранящиеся в оперативной памяти, помогают при проведении ремонтных работ.

Таким образом, нетрудно догадаться, что контроллер и его схема являются достаточно сложными приборами, вмешиваться в работу которых без хороших знаний не рекомендуется. Одно дело понимать, как все устроено и функционирует, и совершенно другое заниматься самостоятельным, любительским ремонтом. Даже малейшие ошибки в столь сложной детали могут привести к серьезным перебоям в работе основного двигателя автомобиля.

Системы и схемы управления шаговыми двигателями без обратной связи

Одной из наиболее важных проблем при использовании ШД является раз­работка систем управления без обратной и с обратной связью по положе­нию ротора. В этой главе рассмотрены системы управления без обратной связи.

5.1. Система управления

Простая система управления для ШД показана на схеме рис. 5.1.

Рис. 5.1. Схема системы управления ШД: 1 — логический блок; 2 — коммутатор; 3 — двигатель; 4 — входной контроллер.

Для удоб­ства объяснения она разделена на две части, ШД в примере четырехфазный на рис. 5.1, а представлена часть системы управления от логического бло­ка до двигателя.

Сигнал управления, приходящий на логический блок, обеспечивает подачу сигнала управления на коммутатор, тем самым способствуя пере­мещению ротора двигателя на один шаг. Направление вращения опреде­ляется логическим состоянием входа, т.е. Н-уровень для вращения по ча­совой стрелке и L-уровень против часовой стрелки. В некоторых случаях применяются логические блоки с не зависящим от направления выход­ным сигналом. Если один инкремент движения осуществляется за один шаг, то на схеме рис. 5.1, а представлена вся система управления. Но если шагов два или больше, то перед логическим блоком необходимо поставить еще одно устройство для создания соответствующей инкре­менту цепочки входных импульсов. Это устройство называется входным контроллером (рис. 5.1, б). В сложных случаях функцию входного конт­роллера выполняют такие электронные устройства, как микропроцессо­ры, которые генерируют цепочки импульсов для ускорения или замедле­ния движения оптимальным образом. В гл. 5 будут рассмотрены элемен­ты логических блоков, а затем устройств коммутаторов и входных конт­роллеров. В заключение приведен пример использования микропроцессо­ра в схеме управления без обратной связи.

Читать еще:  Nissan primera p11 троит двигатель

5.2. Логические блоки системы управления

Логический блок — это логическая схема, которая управляет последова­тельностью возбуждения обмоток в соответствии с поступлением вход­ных импульсов. Обычно логический блок состоит из регистра сдвига и логических схем (функций) таких, как НЕ-И, НЕ-ИЛИ и т.д. В настоящее время в качестве регистра сдвига применяют универсальные схемы. Одна­ко для конкретных целей можно сконструировать необходимый логи­ческий блок подбором соответствующей интегральной микросхемы, реализующей триггер с логическим входом, срабатывающий по обратно­му фронту сигнала управления (триггеры JK-FF), и логических схем. Базисные функции схем и триггеров приведены на рис. 5.2.

Рис. 5.2. Логические блоки и их функции

Триггер JK-FF реализует функцию, задаваемую таблицей и выполняемую тогда, когда на вход* поступает сигнал Н. Если на вход* поступает сигнал L, то на выходе О будет сигнал L, а на Q — Н. Поэтому вместо составления логического блока из набора соответствующих интегральных микросхем можно использовать универсальные логические блоки, разработанные для ШД.

Рассмотрим несколько типов логических блоков, состоящих из инте­гральных микросхем с транзисторно-транзисторной логической схемой (TTL), изготовленных по КМОП — технологии.

5.2.1. Двухфазное управление четырехфазным двигателем.

Для случая без указаний направления вращения ротора простой логический блок можно построить с помощью лишь двух триггеров JK-FF, как показано на рис. 5.3.

Блок управления двигателя: устройство, неисправности и диагностика

GL suv (X164) (01.06 — 12.12)

SOLANO (620) sedan (09- )

Одним из важнейших элементов практически всех современных двигателей является электронный блок управления. Это название довольно длинное, так что его сокращают до ЭБУ двигателя. Блок имеет сложное устройство, а его производством занимается ограниченное число фирм. По факту, они же владеют патентами и ограничивают деятельность других фирм, но это уже другой вопрос. Грамотному автолюбителю стоит разбираться в том, что представляет собой ЭБУ двигателя, какое место в структуре автомобильных систем он занимает, какие элементы ему подконтрольны и по каким причинам он может выйти из строя. Обо всем этом – в материале Avto.pro.

Важная ремарка

Сразу отметим, что под ЭБУ понимают вообще все встраиваемые системы, которые получают управляющие сигналы от одной или сразу нескольких систем и подсистем автомобиля. Звучит довольно сложно, так что попробуем разобраться. К примеру, в большинстве автотранспортных средств используются такие управляющие системы и подсистемы:

  1. Контроллер ЭСУД. Часто его называют просто контроллером системы управления ДВС;
  2. ECM. Тот самый модуль управления двигателем;
  3. ECU. Еще один электронный блок управления, однако этим сокращением принято обозначать основу всех электронных управляющих систем автомобиля.

И снова мы возвращаемся к термину ЭБУ и его, если можно так выразиться, универсальности. В действительно встроенных управляющих систем много: непосредственно электронных блок управления двигателем (является наиболее распространенным), центральный блок управления, главный электронный модуль, центральный модуль синхронизации, объединенный моторно-трансмиссионный блок управления, модуль управления подвеской, блок управления тормозной системой, контролер кузова. И это лишь часть возможных вариантов . Часто все системы объединяют под одним термином «компьютер автомобиля». Однако важно понимать, что:

  • Электронная управляющая система состоит из множества блоков и модулей;
  • Каждый блок и модуль является специализированным и не может взять на себя задачи другого блока и модуля.

Основным и наиболее часто встречающимся блоком управления является ЭБУ двигателя . Не совсем правильно будет называть его самым важным, но по факту он контролирует работу силового агрегата, а значит, от его работоспособности зависит очень многое. Например, он считывает и оптимизирует ряд важнейших параметров автомобиля: крутящий момент, состав выхлопных газов, мощность, расходник топлива. В тандеме с ЭБУ двигателя работает целая плеяда датчиков. Далее мы будем рассматривать именно ЭБУ двигателя, а обозначать его будем просто как ЭБУ. И еще раз напоминаем: электронных блоков много, однако в рамках данного материала для простоты мы будет обозначать управляющий элемент двигателя как ЭБУ.

Подробнее об устройстве ЭБУ

Электронный блок управления, иначе называемый контроллером, а в народе «мозгами» двигателя, устроен довольно сложно. Внешне это относительно небольшой блок с металлическим корпусом , но все самое интересное скрыто внутри. Блок управления включает в себя такие элементы:

  • Процессорная часть, иначе называемая микроЭВМ;
  • Элементы, формирующие сигналы, иначе входные и выходные формирователи;
  • Источник питания;
  • Многополюсный штекерный разъем.

Как читатель наверняка знает, ЭБУ работает в тандеме со множеством датчиков. Вот несколько примеров: датчик положения дроссельной заслонки, датчик массового расхода воздуха, датчик детонации. Практически всем этим датчикам посвящены отдельные материалы раздела « Полезные советы » на Avto.pro – советуем ознакомиться с ними. А мы продолжим разбор ЭБУ.

Как устроена процессорная часть

Основой процессорной части ЭБУ является однокристальная микроЭВМ (микро электронно-вычислительная машина). По сути, это есть тот самый «мозг» электронного блока управления двигателя. По современным меркам микроЭВМ устроен довольно просто. Дело в том, что ключевые его элементы входят в структуру, которая умещается на одном кристалле (чипе). Важным моментом в описании микроЭВМ является его разрядность . Разрядностью называют количество бит информации, оперировать с которыми будет микропроцессор. МикроЭВМ бывают 8-, 16- и 32-разрядными. Сами устройства включают в себя:

  • Центральный процесс;
  • Постоянное запоминающее устройство (сокр. ПЗУ);
  • Аналогово-цифровой преобразователь (сокр. АЦП);
  • Оперативное запоминающее устройство (сокр. ОЗУ);
  • Порты ввода и вывода;
  • Генератор тактовой частоты;
  • Таймеры, иначе называемые счетчиками.

Можно провести параллель между современным компьютером и процессорной частью ЭБУ. По факту, в ЭБУ объединяется ряд компонентов, которые в системных блок персональных компьютеров и ноутбуков идут отдельно друг от друга, но объединяются материнской платой. Здесь есть интересные особенности, но их мы рассматривать не будем – автолюбителю важно понимать, что принципиальные схемы современных электронно-вычислительных машин очень похожи друг на друга.

Центральный процессор ЭБУ подбирает команды и данные из памяти и производит различные операции над этими данными. Кроме того, он управляет сигналами, проходящими через внутреннюю шину адреса и данных. Постоянное запоминающее устройство – это то место, где хранятся программы и данные. Информация имеет вид констант. Сама же программа записывается в виде машинных кодов микроЭВМ. Данные представляют собой калибровочные таблицы констант , участвующих в процессе расчетов. Данные из таблиц могут быть выбраны и в качестве управляющих параметров. Что интересно, данные в ПЗУ хранятся неограничено долго. Оперативное запоминающее устройство берет на себя задачу хранения данных, которые могут измениться. Например, промежуточных результатов вычислений или же значений, получаемых от датчиков. Хранить информацию ОЗУ может в течение ограниченного промежутка времени – она стирается после отключения питания.

Читать еще:  Bmw e90 какие двигатели ставили

Тандем центральный процессор – ПЗУ – ОЗУ является ключевым для ЭБУ. Если говорить по-простому, именно этот тандем выделяет данные и параметры, обсчитывает их, запоминает и отдает команды. К этому тандему также можно отнести так называемые энергонезависимые ОЗУ . Они питаются от аккумуляторной батареи напрямую. Такая память может записать данные и хранить их очень долго. Пока аккумулятор не потеряет накопленную энергию вследствие саморазряда, энергонезависимые ОЗУ продолжат хранить данные.

Важным элементом ЭБУ является аналогово-цифровой преобразователь. Дело в том, что однокристальные микроЭВМ могут работать только с цифровыми сигналам. В АЦП аналоговый сигнал преобразуется в цифровой код. Порты ввода и вывода, как несложно догадаться из их названия, служат для получения и считывания входных сигналов и передачи выходных сигналов и информации. Таймером же называют устройство, которое служит как для измерения интервалов времени , так и подсчета числа событий . Генератор тактовой частоты призван синхронизировать работы всей системы за счет выработки тактовых импульсов. От точности работы генератора будет зависеть точность измерения интервалов времени.

Как работают формирователи входных и выходных сигналов

Как уже было указано, в ЭБУ нет смысла, если к нему не подключены датчики. Именно они измеряют физические параметры, преобразовывают результаты измерений в электрический сигнал и далее направляют его блок управления. Сигнал от датчика проходит формирователь, в котором от усиливается или ослабляется – это называется согласованием уровней . Входные формирователи также защищают ЭБУ он перенапряжения. Формирователи работают с такими сигналами:

  • Аналоговые;
  • Дискретные;
  • Частотные.

Формирователи делятся на подтипы в зависимости от того, с какими сигналами они работают. Это связано с тем, что разные типы сигналов имеют различные параметры. Вот например:

  • Аналоговые сигналы меняются во времени непрерывно. Примером является сигнал с датчика положения дроссельной заслонки. Непрерывно поступающие сигналы проходят через обработку в формирователи, а затем поступают к аналогово-цифровому преобразователю и к процессорной части ЭБУ;
  • Дискретные сигналы меняются скачкообразно и являются прерывистыми. В качестве примера можно взять сигнал включения зажигания. Его изменения происходит резко, а сам сигнал поступает сначала в преобразователь, а затем напрямую в процессорную часть ЭБУ;
  • Частотные сигналы наиболее интересны. Они не просто изменяют частоту – эти изменения сами по себе несут информацию о реальных изменениях величин, которые измеряет датчик. Соответственно, и обработка этих сигналов будет сложной. Сначала они ограничиваются по амплитуде, а затем поступают на вход таймера.

Схема генератора автомобиля

    66 9 65k
    261 2 289k

Калькулятор перевода силы тока в мощность

Перевести сколько ампер у квт онлайн. Калькулятор перевода силы тока ампер в мощность ватт

Самая основная функция генераторазарядка батареи аккумулятора и питание электрического оборудования двигателя.

Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.

  1. Аккумуляторная батарея
  2. Выход генератора «+»
  3. Выключатель зажигания
  4. Лампа-индикатор исправности генератора
  5. Помехоподавляющий конденсатор
  6. Положительные диоды силового выпрямителя
  7. Отрицательные диоды силового выпрямителя
  8. «Масса» генератора
  9. Диоды обмотки возбуждения
  10. Обмотки трех фаз статора
  11. Питание обмотки возбуждения, опорное напряжение для регулятора напряжения
  12. Обмотка возбуждения (ротор)
  13. Регулятор напряжения

Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Принцип работы генератора авто

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Читать еще:  Что такое прожиг в дизельном двигателе

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы:

, W, R, STА.

  • Вывод нулевой точки обмотки статора: 0, МР.
  • Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  • Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  • Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.
  • Схема генератора ВАЗ-2107 типа 37.3701

    1. Аккумуляторная батарея.
    2. Генератор.
    3. Регулятор напряжения.
    4. Монтажный блок.
    5. Выключатель зажигания.
    6. Вольтметр.
    7. Контрольная лампа заряда аккумуляторной батареи.

    При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

    Схема зарядки ВАЗ с инжекторными двигателями

    Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.

    Проверка работы генератора

    Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить напряжение отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.

    Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.

    Элементарная проверка лампочкой и мультиметром

    Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.

    Включаем тестер в режим (DC) постоянного напряжения, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем галогенную лампу H4 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.

    Схема проверки генератора

    Строго не рекомендуется:

    1. Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
    2. Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
    3. Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
    4. Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.
    0 0 голоса
    Рейтинг статьи
    Ссылка на основную публикацию