14 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула обороты асинхронного двигателя от частоты

Расчет асинхронного двигателя

Вы будете перенаправлены на Автор24

Асинхронный двигатель: режимы работы, способы управления

Асинхронный двигатель – это электрический двигатель переменного тока, у которого частота вращения ротора не равна частоте вращения магнитного поля, создаваемого током обмотки статора.

К достоинствам асинхронных двигателей относятся:

  1. Возможность включения в сеть без преобразователей.
  2. Простота изготовления.
  3. Относительно низкие эксплуатационные затраты.
  4. Относительно низкая стоимость.
  5. Высокая степень надежности.

Достоинства асинхронного двигателя обусловлены отсутствием механических коммутаторов в цепи ротора. К недостаткам асинхронных двигателей относятся:

  1. Низкий коэффициент мощности.
  2. Небольшой пусковой момент.
  3. Зависимость электромагнитного момента от напряжения питающей сети.
  4. Отсутствие возможности регулирования скорости при подключении к сети.

Асинхронный двигатель может управляться несколькими способами.

Реостатный способ управления подразумевает изменение частоты вращения асинхронного двигателя посредством изменения сопротивления реостата в цепи ротора, что также способствует увеличению критического скольжения и пускового момента.

Частотный способ управления заключается в изменении частоты вращения двигателя при помощи изменения частоты электрического тока в сети питания. Для осуществления частотного способа управления используется частотный преобразователь.

Управление работой асинхронного двигателя также может осуществляться путем переключения обмоток с одной схемы на другую (звезда — треугольник). К самым распространенным способам относятся импульсный и амплитудно-частотный способы, а также изменение числа пар полюсов и фазовое управление.

Существуют четыре основных режима работы асинхронного двигателя:

  • режим холостого хода,
  • режим противовключения,
  • генераторный режим,
  • двигательный режим.

Двигательный режим работы характеризуется изменением частоты вращения электродвигателя от точки пуска до точки, являющейся идеальной точкой идеального холостого хода. Для того, чтобы асинхронный двигатель функционировал в режиме генератора необходим источник реактивной мощности, для создания магнитного поля. В генераторном режиме значения скольжения меньше нуля. Режим холостого хода электрического двигателя возникает в том случае, если на валу отсутствует нагрузка в виде рабочего органа и редуктора. Если изменяется направление вращения магнитного поля или ротора таким образом, чтобы они вращались в противоположных направлениях, электродвижущая сила, а также активная составляющая тока в обмотке ротора те же, как и двигательном режиме. Но в режиме противовключения электромагнитный момент будет направлен к моменту нагрузки, что делает его тормозящим.

Готовые работы на аналогичную тему

Редуктор – это механизм, чья основная задача заключается в уменьшении усилия, которое необходимо для привода устройства.

Асинхронные двигатели активно используются в водоснабжении, теплоснабжении, компрессорных установках и системах вентиляции и кондиционирования. Так как они обладают плавной регулировкой скоростей, то при их применении часто можно отказаться от использования редукторов, дросселей, вариаторов, что способствует уменьшению эксплуатационных затрат.

Методика расчета параметров асинхронного двигателя

До расчета основных характеристики и параметров асинхронного двигателя выбираются его основные размеры, к которым относятся количество пар полюсов, внутренний диаметр двигателя, длина сердечника, внешний и внутренний диаметр статора, а также высота оси вращения.

При расчете параметров асинхронного двигателя сначала определяется величина механических потерь, значение которой, в зависимости от модели двигателя, находится в диапазоне, определяемом следующим образом:

$Рпотерь = (0,01 . 0,05) * Рн$

где, Рн — номинальная мощность двигателя.

Номинальное значение тока статора асинхронного двигателя рассчитывается по следующей формуле:

Рисунок 1. Формула. Автор24 — интернет-биржа студенческих работ

Где: Uн — номинальное линейное напряжение двигателя; cosфн — коэффициент мощности в номинальном режиме работы; КПДн — коэффициент полезного действия в номинальном режиме.

Следующим параметром, который необходимо рассчитать, является сопротивление обмотки статора асинхронного двигателя:

Рисунок 2. Формула. Автор24 — интернет-биржа студенческих работ

Где: R’1 — активное сопротивление обмотки статора в номинальном режиме работы двигателя.

Далее определяется активное приведенное сопротивление обмотки ротора асинхронного двигателя для установившегося номинального режима работы и для режима прямого пуска. Для установившегося номинального режима формула выглядит следующим образом:

Рисунок 3. Формула. Автор24 — интернет-биржа студенческих работ

Где: R’’2 — приведенное к обмотке статора активное сопротивление обмотки ротора в номинальном режиме.

Для режима прямого пуская формула выглядит следующим образом:

Рисунок 4. Формула. Автор24 — интернет-биржа студенческих работ

где: R’’2n — активное сопротивление обмотки ротора при коротком замыкании приведенное к обмотке статора.

Затем рассчитываются индуктивности рассеяния обмоток статора и ротора асинхронного двигателя. Для установившегося номинального режима формула имеет следующий вид:

Рисунок 5. Формула. Автор24 — интернет-биржа студенческих работ

Где: X’1 — индуктивное сопротивление рассеяния обмотки статора в номинальном режиме; X’’2 — индуктивное сопротивление рассеяния обмотки ротора в номинальном режиме, которое приведено к обмотке статора; п = 3,14; fn — частота сети.

Для режима прямого хода используется следующая формула:

Рисунок 6. Формула. Автор24 — интернет-биржа студенческих работ

где: Хкп — индуктивное сопротивление короткого замыкания.

Далее рассчитывается индуктивность цепи намагничивания асинхронного двигателя в номинальном режиме:

Рисунок 7. Формула. Автор24 — интернет-биржа студенческих работ

где: Xu — главное индуктивное сопротивление

Индуктивность цепи намагничивания для пускового режима асинхронного двигателя необходимо уменьшить на 30-40 %

Коэффициент вязкого трения рассчитывается по следующей формуле:

$F = Pпотерь / (2п * (nн / 60)$

где: nн — номинальная частота вращения.

Номинальная частота вращения асинхронного двигателя рассчитывается по следующей формуле:

где: no — синхронная частота вращения; Sn — номинальное скольжение

Расчет асинхронного двигателя является важной составляющей процесса проектирования не только самого двигателя, но и промышленного объекта. Данный двигатель является важным элементом многих производственных и технологических процессов, от качества протекания которых во многом зависит качество готовой продукции.

Мой секрет

  • Электрооборудование
  • Электропроводка
  • Электроснабжение
  • Учет энергии
  • Электродвигатели
  • Блоки питания

Частота вращения асинхронного двигателя. Расчет параметров частотного преобразователя для асинхронных двигателей

Регулирование частоты вращения электроприводов является одной из важнейших задач современной электротехники. Разработка и применение рациональных способов регулирования позволяют повысить производительность механизмов, улучшить качество выпускаемой продукции, упростить механическую часть привода, уменьшить расход электроэнергии и т. д.

С регулированием частоты вращения не следует смешивать естественное изменение частоты вращения электродвигателя в соответствии с его механической характеристикой, когда изменяется нагрузка на валу привода. Регулирование — это принудительное изменение частоты вращения электропривода в зависимости от требований приводного механизма.

Любой способ регулирования характеризуют следующие основные показатели:

диапазон регулирования — отношение максимальной частоты вращения к минимальной, которое можно получить в приводе т.е. ;

плавность регулирования — число устойчивых скоростей, получаемых в данном диапазоне регулирования;

экономичность — учет затрат, связанных с созданием самого способа регулирования, и дополнительных потерь энергии, возникающих в приводе;

Читать еще:  Греется дизельный двигатель под нагрузкой причины

стабильность работы привода — изменение частоты враще­ния при изменении момента на валу двигателя. Стабильность работы целиком определяется жесткостью механических характеристик;

направление регулирования показывает, что частота вращения изменяется только вниз или только вверх от основной частоты вращения привода или же возможно регулирование и вверх и вниз.

Частоту вращения ротора асинхронного двигателя определяют по формуле:

где f- частота переменного тока; р — число пар полюсов об­мотки статора; s — скольжение.

Из представленной выше формулы можно заключить, что частоту вращения асинхронного двигателя можно регулировать изменением одной из трёх величин:

Числа пар полюсов магнитного потока статора p;

Частоты тока в статоре f.

Рассмотрим возможности регулирования частоты вращения ротора путем изменения скольжения. Скольжение является функцией многих параметров двигателя:

s = f(R 1 , X 1 ;R 2 ; X 2 ; U),

где R 1 X 1 — активное и индуктивное сопротивление цепи статора,; R 2 , Х 2 — то же, ротора;

U — напряжение питания двигателя.

Из формулы видно, что для изменения скольжения s можно вводить дополнительные резисторы или индуктивности в цепи обмоток статора или ротора либо уменьшать напряжение питания двигателя.

Изменение напряжения.

Известно, что максимальный момент асинхронного двигателя пропорционален квадрату напряжения сети и механические характеристики при различных напряжениях имеют вид, показанный на рис.5.8, a. Анализ этих характеристик совместно с характеристикой момента сопротивления Мс.г грузоподъемного устройства показывает, что регулирование частоты вращения возможно в очень узком диапазоне. При напряжении 0,6 U н двигатель не запустится, так как Мп Расчет количества оборотов асинхронного двигателя

Распространенным двигателем на станках и подъемных устройствах является двигатель с короткозамкнутым ротором, поэтому пример для расчета следует брать для него. Сетевое напряжение поступает на статорную обмотку. Обмотки смещены друг от друга на 120 градусов. Возникшее поле электромагнитной индукции возбуждает электрический ток в обмотке. Ротор начинает работать под действием ЭМС.

Основной характеристикой работы двигателя является число оборотов в минуту. Рассчитываем это значение:

n = 60 f / p, обор / мин;

где f – частота сети, герц, р – количество полюсов статора (в парах).

На корпусе электродвигателя имеется табличка с техническими данными. Если ее нет, то можно самому рассчитать число оборотов вала оборудования по другим имеющимся данным. Расчет производится тремя способами.

  1. Расчет числа катушек, которое сравнивается с нормами для разного напряжения, следует по таблице:

  1. Расчет скорости работы по шагу диаметра обмотки по формуле:

2 p = Z 1 / y, где 2р – количество полюсов, Z 1 – число пазов в статоре, у – шаг обмотки.

Выбираем из таблицы подходящие обороты двигателя:

  1. Высчитываем количество полюсов по параметрам сердечника по формуле:

2p = 0,35 Z 1 b / h или 2 p = 0,5 D i / h,

где 2р – количество полюсов, Z 1 – число пазов, b – размер зуба, см, h – высота спинки, см, D i – диаметр по зубцам, см.

По результатам расчета и индукции следует число витков обмотки, сравнивается со значениями мотора по паспорту.

Как изменить скорость работы двигателя?

Изменять скорость вращающего момента механизма оборудования можно различными способами, например, механическими редукторами с переключением передач, муфтами и другими устройствами. Но это не всегда возможно. Практически используется 7 способов коррекции частоты вращения регулируемых приводов. Все способы разделены на два основных направления.

  1. Коррекция магнитного поля путем воздействия на частоту тока, уменьшение или увеличение числа пар полюсов, коррекция напряжения. Направление характерно моторам с короткозамкнутым (КР) ротором.
  2. Скольжение корректируется напряжением питания, добавлением еще одного резистора в цепь схемы ротора, установкой двойного питания, использованием каскада вентилей. Такое направление используется для роторов с фазами.
  • Частотники бывают с двумя видами управления: скалярное, векторное. При скалярном управлении прибор действует при определенных значениях выходной разности потенциалов и частотой, работают в примитивных домашних приборах, например, вентиляторах. При векторном управлении сила тока устанавливается достаточно точно.
  • При выборе прибора параметры мощности играют определяющую роль. Величина мощности расширяет сферу использования, упрощает обслуживание.
  • При выборе устройства учитывается интервал рабочего напряжения сети, что снижает опасность выхода его из строя из-за резких перепадов разности потенциалов. При чрезмерном повышении напряжения конденсаторы сети могут взорваться.
  • Частота – немаловажный фактор. Его величина определяется требованиями производства. Наименьшее значение говорит о возможности использования скорости в оптимальном режиме работы. Для получения большего интервала частоты применяют частотники с векторным управлением. В реальности часто используются инверторы с интервалом частот от 10 до 10 Гц.
  • Частотный преобразователь, имеющий много разных выходов и входов удобен в пользовании, но стоимость его выше, настройка сложнее. Разъемы частотников бывают трех типов: аналоговые, дискретные, цифровые. Связь обратного вида вводных команд производится через аналоговые разъемы. Цифровые клеммы производят ввод сигналов от датчиков цифрового типа.
  • Выбирая модель частотного преобразователя, нужно дать оценку управляющей шине. Ее характеристика подбирается под схему инвертора, что обуславливает число колодок. Наилучшим выбором работает частотник с запасом количества разъемов для дальнейшей модернизации прибора.
  • Частотники, выдерживающие большие перегрузки (на 15% выше мощности мотора), при выборе имеют предпочтения. Чтобы не ошибиться при покупке преобразователя частоты, ознакомьтесь с инструкцией. В ней имеются главные параметры эксплуатации оборудования. Если нужен прибор для максимальных нагрузок, то необходимо выбирать частотник, сохраняющий ток на пике работы выше, чем на 10% от номинала.

Как подключить частотный преобразователь

Если кабель для подключения на 220 В с 1-й фазой, применяется схема «треугольника». Нельзя подключать частотник, если выходной ток выше 50% от номинального значения.

Если кабель питания на три фазы 380 В, то делается схема «звезды». Чтобы проще было подключать питание, предусмотрены контакты и клеммы с буквенными обозначениями.

  • Контакты R, S, T предназначены для подключения сети питания по фазам.
  • Клеммы U , V , W служат соединением электродвигателя. Для реверса достаточно изменить подключение двух проводов между собой.

В приборе должна быть колодка с клеммой подключения к земле. Подробней, как подключить, .

Как обслуживать частотные преобразователи?

Для долгосрочной эксплуатации инвертора требуется контроль за его состоянием и выполнение предписаний :

  1. Очищать от пыли внутренние элементы. Можно использовать компрессор для удаления пыли сжатым воздухом. Пылесос для этих целей не подходит.
  2. Периодически контролировать состояние узлов, производить замену. Срок службы электролитических конденсаторов составляет пять лет, предохранительных вставок – десять лет. Охлаждающие вентиляторы работают до замены 3 года. Шлейфы проводов используются шесть лет.
  3. Контроль напряжения шины постоянного тока и температура механизмов является необходимым мероприятием. При повышенной температуре термопроводящая паста засыхает и выводит из строя конденсаторы. Каждые 3 года на силовые клеммы наносят слой токопроводящей пасты.
  4. Условия и режим работы необходимо соблюдать в строгом соответствии. Температура окружающей среды не должна превышать 40 градусов. Пыль и влажность отрицательно влияют на состояние рабочих элементов прибора.
Читать еще:  Что такое низкая компрессия двигателя

Окупаемость преобразователя частоты

Электроэнергия постоянно дорожает, руководители организаций вынуждены экономить разными путями. В условиях промышленного производства большая часть энергии расходуется механизмами, имеющими электродвигатели.

Изготовители устройств для электротехнических машин и агрегатов предлагают специальные устройства и приборы для управления электромоторами. Такие устройства экономят энергию электрического тока. Они называются инверторами или частотными преобразователями.

Финансовые затраты на покупку частотника не всегда оправдывают экономию средств, так как стоимость их сопоставима со стоимостью . Не всегда привод механизма можно быстро оснастить инвертором. Какие сложности при этом возникают? Разберем способы запуска асинхронных двигателей для пониманию достоинств инверторов.

Методы запуска двигателей

Можно определить 4 метода пуска двигателей.

  1. Прямое включение, для моторов до 10 кВт. Способ неэффективен для ускорения, увеличения момента, перегрузок. Токи выше номинала в 7 раз.
  2. Включение с возможностью выбора схем «треугольника» и «звезды».
  3. Интегрирование устройства плавного пуска.
  4. Применение инвертора. Способ особенно эффективен для защиты мотора, ускорения, момента, экономии энергии.

Экономическое обоснование эффекта от инвертора

Время окупаемости инвертора рассчитывается отношением затрат на покупку к экономии энергии. Экономия обычно равна от 20 до 40% от номинальной мощности мотора.

Затраты снижают факторы, повышающие производительность частотных преобразователей:

  1. Уменьшение затрат на обслуживание.
  2. Повышение ресурса двигателя.

где Э – экономия денег в рублях;

Р пч – мощность инвертора;

Ч – часов эксплуатации в день;

К – коэффициент ожидаемого процента экономии;

Т – тариф энергии в рублях.

Время окупаемости равно отношению затрат на покупку инвертора к экономии денег. Расчеты показывают, что период окупаемости получается от 3 месяцев до 3 лет. Это зависит от мощности мотора.

Режимы работы асинхронных машин

Во всех режимах работы асинхронный машин всегда присутствует вращающееся магнитное поле статора. Оно создаётся тремя обмотками, сдвинутыми в пространстве относительно друг друга на 120 градусов, скорость этого вращения равна:

Формула скорости вращения магнитного поля статора

n1 – Скорость вращения магнитного поля статора;

f – Частота питающей сети (50Гц);

p – Количество пар полюсов (max 12 min 2);

Из формулы понятно, что скорость вращения магнитного поля статора асинхронной машины зависит от: частоты питающей сети, на территории стран СНГ она постоянна и равняется 50Гц, от количества пар полюсов в статоре асинхронной машины. Скорость вращения ротора синхронной машины напрямую зависит от скорости вращения магнитного поля статора.

Так же известно, что в их конструкции присутствует ротор, вращающаяся часть, которая может вращаться с различными скоростями. В целом можно сказать, что в асинхронных машинах скорость вращения изменяется только у ротора. Многочисленные наблюдения показали, что в зависимости от частоты вращения ротора асинхронной машины, с ней происходят различные явления. Для упрощения понимания этого вопроса, был введен параметр скольжение S – разность скоростей вращения магнитного поля статора, от скорости вращения ротора:

Скольжение

Эти скорости обозначают буквенно: n – скорость вращения ротора; n1 – скорость вращения магнитного поля.

Режим работы асинхронной машины зависит именно от этого значения разности скоростей вращения магнитного поля статора и скорости вращения ротора.

Различают следующие режимы работы асинхронных машин:

  • Режим двигателя;
  • Режим генератора;
  • Режим электромагнитного тормоза;
  • Режим динамического торможения;

Режим двигателя

Асинхронные двигатели стали очень популярна и наиболее часто применяемая в электроприводах. Режим электродвигателя применяется для приведения во вращение различные устройства, механизмы, насосы, лебедки, редуктора и т.д. путем преобразования электрической энергии в механическую. Как уже многим известно, что её принцип действия объясняется взаимодействием двух магнитных полей статора и ротора. Магнитное поле статора создается системой трехфазных обмоток и магнитопровода, расположенных непосредственно на статоре (корпусе асинхронной машины). Это поля является вращающимся, так как в трех фазной цепи, ток протекает из фазы А в фазу В, из фазы В в фазу С, а из фазы С обратно в фазу А. Обмотки каждой фазы располагают на статоре так, что бы равномерно заполнить всю окружность, т.е. окружность занимает 360 градусов, имея три обмотки, делим 360/3 получаем 120 градусов на каждую обмотку.

обмотки статора

Это вращающееся магнитное поле пронизывая ротор, индуцирует в нем ЭДС, так как ротор короткозамкнутый, то по нему протекает ток. Протекание тока вызывает образование у ротора собственного магнитного поля. Поле статора, которое вращается с скоростью n1 взаимодействует с полем ротора, которое является неподвижным, и старается остановить, затормозить поле статора. Так как ротор закреплен на подшипниках, он способен свободно вращаться вокруг своей оси. Получается, что магнитное поля статора притягивает поле ротора, увлекает его за собой с определенной силой, в результате чего и сам ротор начинает вращаться.

Особенностью этого режима является то, что скорость вращения магнитного поля статора и скорость вращения ротора не должны быть равными, тем более, скорость ротора всегда меньше. Если же каким-либо образом их скорости будут равными, то исходя из явления электромагнитной индукции, обязательна разность магнитного потока, пересекающего тот или иной контур, что и обеспечивается отставанием ротора от магнитного поля статора. Если же все-таки их скорости сравняются, по короткозамкнутой обмотке ротора перестанет протекать электрический ток, исчернит его магнитное поле и ротор не будит увлекаться полем статора. Скольжение в режиме электродвигателя должно быть положительным числом и не равным нулю.

Стоит добавить, что режим двигателя у асинхронных машин является самым часто используемым.

Режим генератора

Режим генератора у асинхронных машин является полной противоположностью режиму двигателя. Самым главным отличием является то, что при режиме двигателя, асинхронная машина потребляет из сети электрическую энергию. А в режиме генератора наоборот отдает в сеть выработанную электрическую энергию.

Режим генератора возможен только тогда, когда скорость вращения ротора n будет выше скорости вращающегося магнитного поля статора. В этом случаи скольжение S будит отрицательным. Для этого необходимо ускорить ротор синхронной машины, то есть посадить на вал ротора, какой-либо механизм (турбина, редуктор, другой двигатель).

режим генератора

Допустим ротор мы разогнали до 3500 оборотов в минуту, а скорость магнитного поля статора 3000 оборотов в минуту, определим скольжение:

Режим генератора у асинхронных машин не является часто используемым, и может применяться в узких специализированных областях, в маломощных электростанциях.

Стоит отметить, что при таком режиме работы, отдаваемая в сеть электроэнергия совпадает по частоте с частотой самой сети. Так как она зависит только от частоты вращения магнитного поля статора, которая как мы знаем не изменяется.

В использовании таких генераторов есть огромный плюс, в его устройстве отсутствуют скользящие контакты, вращающиеся обмотки, это обеспечивает надежную и долговременную эксплуатацию. Так же эти генераторы мало восприимчивы к коротким замыканиям в сети. Еще не маловажным условием работы является, наличие остаточной намагниченности ротора, которое усиливается конденсаторными установками, включенными в цепи статорных обмоток.

Режим электромагнитного торможения

Режим электромагнитного торможения является еще более специфичными специализированным. Вся суть этого режима в том, что если вращение ротора асинхронной машины не совпадает с направлением вращения магнитного поля статора, то ротор будит затормаживаться под действием этого магнитного поля статора. Такой режим возможен только при реверсивном подключении асинхронной машины, так как путем переключения двух фаз достигается изменение направления вращения магнитного поля статора, и используется в различных грузоподъемных и транспортировочных устройствах. Этот режим часто называют режимом торможения противотоком или противовключением. При таком режиме, если нам необходимо остановить двигатель, при полной остановке, статор необходимо отключить от сети, так как вал начнет вращаться в обратном направлении.

Режим динамического торможения

В таком режиме, асинхронная машина отключается от трех фазной сети, и на обмотки статора подается постоянный ток. Таким образом на статоре образуется постоянное магнитное поле (постоянный магнит), которое тормозит ротор двигателя.

Все выше представленные режимы работы асинхронных машин, кроме режима двигателя, являются специализированными, и используются только в определенных установках, устройствах, станках и т.д.

Работа асинхронного двигателя

Рис. 10-19. Работа асинхронного двигателя при cos Ψ2 = 1.

Читать еще:  Бестопливный генератор своими руками из асинхронного двигателя

Взаимодействие тока I2 и потока Ф создает электромагнитные силы F, приводящие ротор во вращение, вслед за вращающимся потоком. Таким образом, асинхронный двигатель представляет собой трансформатор с вращающейся, вторичной обмоткой и способный поэтому превращать электрическую мощность Е2I2 cos Ψ2 в механическую.

Ротор всегда отстает от вращающегося магнитного потока, так как только в этом случае может возникать э, д. с. E2, а следовательно, ток I2 и силы F. Чтобы изменить направление вращения ротора, следует изменить направление вращения потока. Для этого меняют местами два любых провода, подводящих ток от сети к статору. В этом случае меняется порядок следования фаз ABC на АСВ или ВАС и поток вращается в обратную сторону.

СКОЛЬЖЕНИЕ РОТОРА

Ротор асинхронного двигателя всегда должен отставать от вращающегося магнитного потока. Скорость вращения потока принято означать п1, она постоянна, так как р = const и f1 = const. Скорость вращения ротора можно обозначить п2. Величина называется скольжение м.

Теоретически скольжение меняется от 1 до 0 или от 100% до 0, так как при неподвижном роторе в первый момент пуска п2 = 0, а если вообразить, что ротор вращается синхронно с потоком, п2 = п1. Чем больше нагрузка на валу, тем больший тормозной момент должен уравновеситься большим вращающим моментом. Последнее возможно только при увеличении I2, а значит, и Е2. Как будет показано ниже, Е2увеличивается при уменьшении n2, т. е. при увеличении s. Таким образом, при увеличении нагрузки на валу скорость ротора п2 уменьшается. Скольжение при номинальной нагрузке Sн у асинхронных двигателей равно от 1 до 6%; меньшая цифра относится к мощным двигателями

ЧАСТОТА Э. Д. С. И ТОКА В ОБМОТКЕ РОТОРА

Магнитный поток вращается со скоростью п1, ротор — со скоростью п2. Частота э. д. с. и тока в роторе, очевидно, пропорциональна скорости вращения потока относительно ротора, т. е. величине п1п2 . Тогда

f2 = (p( п1 ))/60 = pn1s/60 = f1s

При неподвижном роторе f2 = f1 • 1 = f1 если ротор вращается синхронно, то f2 = f1 • 0 = 0. При номинальной скорости вращения, т. е. при sH ≈ 2—4%, частота f2 очень мала: f2 = f1s = 50 • 0,02÷50 • 0,04, т. е. 1—2 гц.

ЭЛЕКТРОДВИЖУЩИЕ СИЛЫ ОБМОТОК СТАТОРА И РОТОРА

Если ротор неподвижен, то в обмотках статора и ротора, как в первичной и вторичной обмотках трансформатора, наводятся э. д. с:

Отличие только в том, что коэффициентами Ʀ1 и Ʀ2 приходится учитывать особенности обмоток, распределенных по цилиндрической поверхности статора и ротора. При вращении ротора его э. д. с. все время меняется, так как f2 = f1s. Тогда э. д. с. вращающегося ротора

Эту э. д. с. принято выражать через э. д. с. неподвижного ротора

Следовательно, э. д. с. ротора сильно меняется в процессе работы двигателя. При s = 1, E2s = Е2, а при s = 0, E 2 s = 0.

СОПРОТИВЛЕНИЯ В ОБМОТКЕ РОТОРА

Как и в трансформаторе, часть потока статора замыкается по путям рассеяния, т. е. вокруг проводов статора, не заходя в ротор (рис. 10-19). Известно, что эти потоки обусловливают реактивное (индуктивное) сопротивление обмотки x1. Такие же потоки рассеяния существуют и вокруг проводов обмотки ротора, когда в ней протекает ток. Ими обусловлено реактивное сопротивление ротора x2.

При неподвижном роторе

При вращающемся роторе

Отсюда следует, что реактивное сопротивление ротора непрерывно и сильно меняется при изменении режима работы двигателя от величины x2s = х2 • 1 = х2 при неподвижном роторе до величины x2s = х2 • 0 = 0, если бы ротор вращался синхронно.

В двигателях нормального исполнения изменением активного сопротивления ротора при изменении частоты от 50 гц до 0 можно пренебречь и считать r2 = const.

ТОК В ОБМОТКЕ РОТОРА

Из сказанного выше об изменении э. д. с. и реактивного сопротивления обмотки ротора можно заключить, что ток в роторе I2 = E2s/√(r 2 2 + x 2 2s)

тоже меняется при изменении скорости вращения. Пусковой ток I2п должен быть велик и отставать от э. д. с. на большой угол Ψ2, так как Е2 велика, а реактивное сопротивление обмотки х2 обычно в 8—10 раз больше активного r2. При вращении ротора уменьшаются E2s и x2s. Вследствие этого уменьшаются ток I2и угол Ψ 2. Указанное обстоятельство очень важно, так как в этом существенная разница между трансформатором и асинхронным двигателем.

Статья на тему Работа асинхронного двигателя

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector