1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Где и как используются тепловые двигатели

Тепловые двигатели

Тепловой двигатель – это устройство, преобразующее тепловую энергию в механическую работу.

Иногда дается такое определение:

Тепловой двигатель преобразует внутреннюю энергию рабочего тела в механическую.

Итак, для теплового двигателя необходимо рабочее тело (газ или пар), нагреватель. Кроме того, в системе должна быть разница температур, чтобы рабочее тело, после совершения работы, могло отдать теплоту; то есть кроме нагревателя, нужен холодильник.

  1. Классификация тепловых двигателей
  2. Преобразование энергии в тепловых двигателях
  3. Адиабатный процесс и цикл Карно
  4. Теория и практика

Классификация тепловых двигателей

Различие между теплотой и внутренней энергией условно, оно принято в термодинамике, отражает специфику рассматриваемых этой наукой объектов. Если пар в котле нагревается внешним источником, или система охлаждается, отдавая тепло в окружающую среду, то говорят о поступающей извне или отдаваемой в окружающую среду теплоте. Если в цилиндре воспламеняется бензин, и расширяющийся газ толкает поршень, то говорят о преобразовании внутренней энергии рабочего тела.

В связи с этим термодинамике принята классификация устройств:

  1. Двигатели внешнего сгорания, преобразующие внешнюю теплоту (паровая машина, паровая турбина)
  2. Двигатели внутреннего сгорания, преобразующие внутреннюю энергию топлива (ДВС, реактивный двигатель)

Первый двигатель внешнего сгорания был изобретен в древнем Риме. Пар, направленный по изогнутым трубам из сферы с кипящей водой, заставлял ее вращаться. Это был просто эффектный эксперимент, игрушка, ее не использовали для работы. Производство машин и применение их в промышленности не было актуально при рабовладении, оно началось тогда, когда стало экономически выгодным.
Отметим, что к тепловым двигателям относятся устройства с принципиальными различиями в конструкции и логике работы: турбина, реактивный двигатель и циклические двигатели.

Термодинамика, как наука, сформировалась в процессе работы над цикличными двигателями. В следующем разделе пойдет речь о цикличных двигателях, их КПД, а также о втором начале термодинамики.

Преобразование энергии в тепловых двигателях

Создание парового двигателя ознаменовало начало научно-технической революции, но сами паровые двигатели поначалу были несовершенны. Они развивали большую мощность, но потребляли слишком много топлива.

Если сравнить работу первых двигателей с тягловой силой лошади, то окажется, что лошадь гораздо эффективнее использует «горючее» — овес и сено. Ученые отмечали, что организм «сжигает» еду: ведь человек и животные вдыхают кислород, а выдыхают углекислый газ и водяной пар; так же поступает топка с горящими дровами.

Именно тогда научились считать калории. Энергию пищи оценили по тому количеству теплоты, которая выделится при ее сжигании. По шкале «калорийности» можно сравнивать овес, уголь и бензин. И по этой шкале первые паровые двигатели были крайне неэффективны: только 1% — 2% сгоревших калорий превращались в полезную работу.

Делались попытки усовершенствовать машины, иногда они давали лучший эффект, иногда худший; требовалась теоретическая база для того, чтобы добиться наилучшего варианта.

Основоположники термодинамики прежде всего решали вопрос: может ли вся теплота, передаваемая паровой машине, преобразоваться в работу? В механике преобразование потенциальной энергии в кинетическую может происходить с очень малыми потерями. В основном мешает трение, но во многих задачах трением можно пренебречь. Представим, что мы так же сведем к нулю трение поршня о цилиндр, непроизводительные потери тепловой энергии. Можно ли представить себе идеальный циклический двигатель, в котором вся теплота переходит в работу?

По первому началу термодинамики, теплота расходуется на работу и увеличение внутренней энергии:

Q = A + DU

Пусть DU = 0. Теплота заставила пар расширяться, пар привел в движение поршень, тот совершил работу. При этом температура пара и его внутренняя энергия не изменилась, Пренебрежем потерями и допустим, что вся теплота перешла в механическую работу: Q = A

Но мы рассматриваем цикличный двигатель. Поршень переместился, совершив работу; теперь его нужно вернуть в исходное состояние.

Если перемещать поршень, сжимая пар, то придется совершить работу не меньшую, чем А. Но это значит, что никого выигрыша не произошло, и коэффициент полезного действия нулевой, даже при отсутствии потерь!

Чтобы уменьшить работу по обратному перемещению поршня, разрешим внутренней энергии меняться. Если пар охладить, его давление уменьшится, и работа по перемещению поршня будет меньше, чем совершенная в рабочем цикле.

Вот эта разность работ и будет полезной отдачей двигателя.

На графике p(v) прямой и обратный ход поршня показан линиями abc и cda, образующими замкнутую фигуру. Площадь замкнутой фигуры abcd соответствует полезной работе. Площадь фигуры V1abcV2 – это работа прямого хода, площадь V2cdaV1 – соответствует работе обратного хода.

Таким образом, тепловому двигателю нужен не только нагреватель, но и холодильник; чаще всего в роли холодильника выступает окружающая среда, которой передаются остатки тепла

В идеальном случае совершенная за цикл работа соответствует разнице между теплотой, которое имело нагретое рабочее тело, и той теплотой, которая осталась у рабочего тела после охлаждения:

Коэффициент полезного действия идеального двигателя равен отношению работы к полученной от нагревателя теплоте:

Эта формула показывает предел КПД, который не может быть превышен тепловым двигателем при определенных параметрах нагревателя и холодильника. Реальный КПД двигателя зависит от его конструкции, и он всегда меньше идеального значения.

Итак, КПД двигателя всегда меньше единицы, поскольку часть тепловой энергии должна отдаваться холодильнику. Это является отражением второго начала термодинамики

Одна из формулировок второго начала термодинамики:

Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара. (Такой процесс называется процессом Томсона).

Адиабатный процесс и цикл Карно

При конструировании теплового двигателя важную роль сыграло понимание адиабатного процесса.

Адиабатный процесс в идеальном газе происходит без обмена теплотой с окружающей средой.

Математическая формула адиабатного процесса:

p*V k = const

где p – давление, V – объем, k – показатель адиабаты, равный отношению теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме.

Рассмотрим, как применяется адиабатный процесс в термодинамике.

Задача конструкторов при разработке двигателя – приблизиться к идеальному значению КПД. Для этого нужно определить наилучший термический цикл тепловой машины и конструкцию, соответствующую двигателю с таким циклом.

Правило для тепловых машин сформулировал в 1824 году Санди Карно, французский ученый. В своей теоретической модели он использовал свойства идеального газа.

Его идея заключалась в том, чтобы расширение газа при прямом ходе шло изотермически, без изменения температуры, и так же изотермически, но при пониженной температуре, происходило сжатие газа при обратном ходе.

Для перехода между верхней и нижней изотермами Карно предложил использовать адиабатическое расширение и адиабатическое сжатие.

Наиболее наглядно цикл Карно изображается на TS диаграмме, по которой можно оценить изменение энтропии системы и ее температуры:

Изменение объема и давления при цикле Карно можно видеть на PS диаграмме:

Изображение цикла на TS диаграмме показывает зависимость КПД от абсолютных значений температуры нагревателя и холодильника:

Читать еще:  Чем грозит езда на непрогретом двигателе

Последняя формула позволяет сделать важный вывод: КПД двигателя зависит от абсолютной температуры холодильника, и наибольший КПД=1 может быть достигнут только при температуре холодильника TX = 0°K, или t= -273°C.

Реальный тепловой двигатель имеет меньший КПД, чем идеальный двигатель Карно, поскольку обеспечить полностью адиабатный процесс, без теплообмена с окружающей средой, невозможно. Кроме того, изотермическое расширение и сжатие реального газа возможно только при достаточно медленных процессах, а их ускорение приводит к изменению температуры.

Теория и практика

Как отразились работы теоретиков на качестве паровых двигателей? Начался быстрый процесс совершенствования этой техники. В семидесятые годы девятнадцатого века паровозы отчаянно дымили и имели КПД = 3%, а в 1910 году паровозы дымили не меньше, но имели КПД = 7-9%. Это большой прогресс, но подняться выше при разработке паровых машин не удалось.

На смену паровозам пришли двигатели внутреннего сгорания: их КПД сразу же превысил паровые двигатели, составил 25%. Современные дизельные двигатели, с электронной системой управления, имеют КПД=40%.

Является ли это пределом? Для двигателей внутреннего сгорания, пожалуй, является. Но есть более производительные тепловые машины: это турбины. Нагретый газ, непрерывной струей вырываясь из сопла, вращает турбину; это не цикличный, а постоянный процесс, и при его реализации без особого труда достигается КПД=60%. Недаром сейчас активно разрабатываются турбодвигатели.

Тепловые двигатели и их применение

Дисциплина: Химия и физика
Тип работы: Реферат
Тема: Тепловые двигатели и их применение

Тепловые двигатели и их применение

Тепловой двигатель – устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

К тепловым двигателям относятся: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Их топливом является

твердое и жидкое топливо, солнечная и атомная энергии.

Тепловые двигатели — паровые турбины — устанавливаются на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока,

а также на всех атомных электростанциях для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на

автомобильном — поршневые двигатели внутреннего сгорания, на водном — двигатели внутреннего сгорания и паровые турбины, на железнодорожном — тепловозы с дизельными установками, в

авиации — поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима.

Мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта.

абота этих двига­телей производится посредством пара. В огромном боль­шинстве случаев — это водяной пар, но возможны ма­шины, работающие с парами других веществ (например, ртути).

Паровые турбины ставятся на мощных электриче­ских станциях и на больших кораблях. Поршневые дви­гатели в настоящее время находят применение только в железнодорожном и водном транспорте

(паровозы и паро­ходы).

Для работы парового двигателя необходим ряд вспо­могательных машин и устройств. Все это хозяйство вместе носит название паросиловой станции. На паро­силовой станции все время

циркулирует одна и та же вода.

Рис.1. Схема оборудования

Вода превращается в пар в котле, пар производит работу в турбине (или в поршневой машине) и снова превращается в воду в барабане, охлаждаемом проточной водой (конден­сатор). Из

конденсатора получившаяся вода посредством насоса через сборный, бак (сборник) снова направляется в котел.

В этой схеме паровой котел является нагревателем, а конденсатор — холодильником. Так как в установке цир­кулирует практически одна и та же вода (утечка пара не­велика и

добавлять воды почти не приходится), то в котле почти не получается накипи, т. е. осаждения растворенных в воде солей. Это важно, так как накипь плохо проводит тепло и уменьшает

коэффициент полезного действия котла. В случае появления накипи на стенках котла ее удаляют.

– тепловой двигатель ротационного типа, преобразующий потенциальную энергию пара сначала в кинетическую энергию и далее в механическую работу. Паровые турбины применяются

преимущественно на электростанциях и на транспортных силовых установках – судовых и локомотивных, а также используются для приведения в движение мощных воздуходувок и других

Турбина (см. рисунок 2) состоит из сталь­ного цилиндра, внутри которого находится вал с ук­репленными на нем рабочими колесами. На рабочих ко­лесах находятся особые изогнутые

). Ме­жду рабочими колесами помещаются сопла или направляю­щие лопатки (

). Пар, вырываясь из промежутков между на­правляющими лопатками, попадает на лопатки рабочего колеса. Рабочее колесо при этом вращается, производя ра­боту. Причиной вращения

колеса в паровой турбине яв­ляется реакция струи пара. Внутри турбины пар расширяется и охлаждается. Входя в турбину по узкому паропроводу, он выходит из нее по очень широкой

После тур­бины или поршневой машины пар поступает в конденсатор, играющий роль холодильника. В конденсаторе пары долж­ны превратиться в воду. Но пар конденсируется в воду только

в том случае, если отводится выделяющаяся при конденсации теплота испарения. Это делают при помощи холодной воды. Например, конденсатор может быть уст­роен в виде барабана, внутри

которого расположены трубы с проточной холодной водой.

В зависимости от степени расширения пара в рабочих лопатках различают активные и реактивные турбины. Пар в активной турбине расширяется только в соплах, и его давление при

прохождении каждого венца с рабочими лопатками не изменяется. Поэтому активная турбина называется также турбиной равного давления. В соплах реактивных турбин в отличие от активных

происходит лишь частичное расширение пара; дальнейшее расширение происходит в рабочих лопатках. Поэтому иногда реактивная турбина называется турбиной избыточного давления.

Отметим, что турбина может вращаться только в одном направлении и скорость вращения ее не может меняться в широких пределах. Это затрудняет применение паро­вых турбин на

транспорте, но очень удобно для враще­ния электрических генерато­ров.

Лопатки на рабо­

чем колесе паровой турбины

Рис.2. Схема устройства паровой турбины

Весьма важной для элект­рических станций является возможность строить турби­ны на громадные мощности (до 1000

000 кВт и более), значительно превышающие максимальные мощности дру­гих типов тепловых двигате­лей. Это обусловлено равно­мерностью вращения вала турбины. При работе

турби­ны отсутствуют толчки, которые получаются в поршневых машинах при движении поршня взад и вперед.

Поршневая паровая машина.

Основы конструкции поршневой паровой машины, изобретенной в конце

, в основном сохранились до наших дней. В настоящее время она частично вытеснена другими ти­пами двигателей. Однако у нее есть свои достоинства, за­ставляющие иногда предпочесть ее

турбине. Это — про­стота обращения с ней, возможность менять скорость и давать задний ход.

В основу краткой классификации паровой машины могут быть положены признаки:

: стационарные, паровозные, судовые, локомобильные, автомобильные и др.;

по расположению и числу цилиндров

: горизонтальные, вертикальные, наклонные; одноцилиндровые и многоцилиндровые –

тандем-машины и компаунд-машины;

по числу оборотов

: тихоходные, среднеходные, быстроходные;

Читать еще:  Давление в системе питания двигателя змз 406

по давлению и способу использования отработавшего пара

: конденсационные, с выхлопом в атмосферу, с противодавлением, с промежуточным отбором пара;

по действию пара на поршень

: простого и двойного действия;

по типу парораспределения

: золотниковые, клапанные, крановые, прямоточные.

Устройство паровой машины показано на рисунке 3. Основная ее часть — чугунный цилиндр 1, в котором хо­дит поршень 2. Рядом с цилиндром расположен парорас­пределительный

механизм. Он состоит из золотниковой коробки, имеющей сообщение с паровым котлом. Кроме котла, коробка посредством отверстия 3 сообщается с кон­денсатором (в паровозах чаще всего

просто через дымовую трубу — с атмосферой) и с цилиндром посредством двух окон 4 и 5. В коробке находится золотник 6, движимый специальным механизмом посредством тяги 7 так, что,

когда поршень движется направо (рис. а), левая часть цилиндра через окно 4 сообщается с паровым котлом, а правая — через окно 5 с атмосферой. Свежий пар входит в цилиндр слева, а

отработанный пар из правой части цилиндра уходит в атмосферу. Затем, когда поршень дви­жется.

Применение тепловых двигателей

Автор: Пользователь скрыл имя, 29 Февраля 2012 в 21:41, реферат

Описание работы

Раньше всего (в конце XVIII века) были созданы паровые поршневые двигатели (паровые машины). Спустя примерно 100 лет появились паровые турбины. Как показывает название, работа этих двигателей производится посредством пара. В огромном большинстве случаев — это водяной пар, но возможны машины, работающие с парами других веществ (например, ртути). Паровые турбины ставятся на мощных электрических станциях и на больших кораблях. Поршневые двигатели в настоящее время находят применение только в железнодорожном и водном транспорте (паровозы и пароходы).

Содержание

1. Паровые машины
2. Двигатель Стирлинга
3. Бензиновый двигатель внутреннего сгорания
4. Дизельные двигатели
Заключение

Работа содержит 1 файл

Применение тепловых двигателей.doc

Применение тепловых двигателей

1. Паровые машины

Раньше всего (в конце XVIII века) были созданы паровые поршневые двигатели (паровые машины). Спустя примерно 100 лет появились паровые турбины. Как показывает название, работа этих двигателей производится посредством пара. В огромном большинстве случаев — это водяной пар, но возможны машины, работающие с парами других веществ (например, ртути). Паровые турбины ставятся на мощных электрических станциях и на больших кораблях. Поршневые двигатели в настоящее время находят применение только в железнодорожном и водном транспорте (паровозы и пароходы).

Достоинства и недостатки. Основное достоинство паровой машины — ее относительная простота и хорошие тяговые характеристики независимо от скорости работы. Это позволяет обойтись без редуктора, что выгодно отличает такой двигатель от двигателя внутреннего сгорания, который на малых оборотах недодает мощность. Поэтому паровая машина очень удобна в качестве тягового двигателя, например, на паровозах. К серьезным недостаткам паровых машин относятся их низкий КПД, сравнительно невысокая максимальная скорость, большой вес и постоянный расход топлива и воды.

Применения. В прошлом паровые машины были по существу единственным первичным двигателем (если не считать водяного колеса), однако в 20 в. их вытеснили электродвигатели, двигатели внутреннего сгорания, газовые и паровые турбины, обладающие более высокими КПД, а также большей компактностью, эффективностью и универсальностью применения.

На повозку паровую машину поставили впервые в 1769, однако практически используемые машины появились только в 1860-х годах. В 1906 на паромобиле Стэнли был установлен мировой рекорд скорости 190 км/ч на трассе в Орландо-Бич (шт. Флорида). Однако в последующие 20 лет паровые двигатели на автомобилях были вытеснены бензиновыми двигателями внутреннего сгорания. Паровые двигатели проиграли соревнование по двум причинам: они замерзали зимой и были неэкономичны, поскольку требовали много топлива и воды.

2. Двигатель Стирлинга

Для применения на автомобилях рассматриваются и другие типы двигателей внешнего сгорания. В двигателе Стирлинга используется горячий воздух, гелий или водород, а не пар. Рабочий цикл двигателя осуществляется за 4 такта: сжатие, нагревание, рабочий ход, охлаждение. Рабочий газ нагревается внешним источником тепла, как в паровой машине, а охлаждается водой, постоянно циркулируя в двигателе. Этот двигатель был изобретен в 1816 шотландцем Р.Стирлингом.

Двигатель Стирлинга имеет определенные преимущества по сравнению с паровыми машинами, а именно, слабое воздействие на окружающую среду и довольно высокий КПД. Наиболее совершенные конструкции двигателей Стирлинга разработаны для судов и грузовых автомобилей.

3. Бензиновый двигатель внутреннего сгорания

Самый распространенный тип современного теплового двигателя — двигатель внутреннего сгорания. Двигатели внутреннего сгорания устанавливаются на автомобилях, самолетах, танках, тракторах, моторных лодках и т. д. Двигатели внутреннего сгорания могут работать на жидком топливе (бензин, керосин и т. п.) или на горючем газе, сохраняемом в сжатом виде в стальных баллонах или добываемом сухой перегонкой из дерева (газогенераторные двигатели).

Одноцилиндровые двигатели ставятся главным образом на мотоциклах. На автомобилях, тракторах и т. п. с целью получения более равномерной работы двигателя ставятся четыре, шесть и более цилиндров.

Двигатель внутреннего сгорания обладает рядом преимуществ, являющихся причиной его широкого распространения (компактность, малая масса). С другой стороны, недостатками двигателя являются: а) то, что он требует жидкого топлива высокого качества; б) невозможность получить при его помощи малую частоту вращения (при малом числе оборотов, например не работает карбюратор).

4. Дизельные двигатели

При сжатии газа его температура повышается. Это повышение температуры в двигателях Р.Дизеля (1858-1913) используется для воспламенения топливовоздушной смеси. В дизельных двигателях можно использовать сравнительно дешевое дизельное топливо вместо дорогого продукта высокой переработки нефти — бензина.

Высокая степень сжатия в дизельных двигателях обусловливает и более высокий КПД. Поэтому дизельные двигатели применяют в тех случаях, когда важен не столько вес, сколько экономичность и высокая мощность.

Дизель оказался более экономичным двигателем, чем бензиновый (к. п. д. около 38 %). Он может иметь значительно большую мощность. Дизели ставят на судах (теплоходах), тепловозах, тракторах, грузовых автомобилях, небольших электростанциях. Большим преимуществом дизеля является то, что он работает на дешевых «тяжелых» сортах топлива, а не на дорогом очищенном бензине. Кроме того, дизели не нуждаются в особой системе зажигания. Однако в тех случаях, когда требуется минимальный вес двигателя при данной мощности, дизели оказываются менее выгодными.

К тепловым двигателям относятся: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Их топливом является твёрдое и жидкое топливо, солнечная и атомная энергии.

В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе.

В современной технике так же широко применяют турбины. Турбины применяют на тепловых электростанциях и на кораблях.

Наибольшее значение имеет использование тепловых двигателей на тепловых электростанциях. Паровые турбины устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном — поршневые двигатели внутреннего сгорания; на водном — паровые турбины; на ж/д. тепловозы с дизельными установками; в авиации — поршневые, турбореактивные и реактивные двигатели.

Читать еще:  126 двигатель ваз рабочая температура

Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов. Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается. Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа. В третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу две-три тонны — свинца.

Один из путей уменьшения загрязнения окружающей среды — использованием в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца. Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.

Выбросы вредных веществ в атмосферу — не единственная сторона воздействия энергетики на природу. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на земле. Одно из направлений, связанное с охраной окружающей среды, это увеличение эффективности использования энергии, борьба за её экономию.

Тепловые машины: основные части и принципы действия тепловых машин; коэффициент полезного действия тепловой машины и пути его повышения; проблемы энергетики и охрана окружающей среды.

Большая часть двигателей, используемых людьми, — это тепловые двигатели. Устройства, превращающие энергию топлива в механическую энергию, называются тепловыми двигателями.

Любой тепловой двигатель (паровые и газовые турбины, двигатели внутреннего сгорания) состоит из трех основных элементов: рабочего тела (это газ), которое совершает работу в двигателе; нагревателя, от которого рабочее тело получает энергию, часть которой затем идет на совершение работы; холодильника, которым является атмосфера или специальные устройства.

Обязательно температура нагревателя больше температуры холодильника.

Рабочее тело двигателя получает количество теплоты Qн от нагревателя, совершает работу А и передает холодильнику количество теплоты Qx..

Эффективность работы двигателя характеризует коэффициент полезного действия (КПД).

Он равен отношению работы к энергии, которое получило рабочее тело от нагревателя.

Паровая или газовая турбина, двигатель внутреннего сгорания, реактивный двигатель работают на базе ископаемого топлива. В процессе работы многочисленных тепловых машин возникают тепловые потери, которые, в конечном счете, приводят к повышению внутренней энергии атмосферы, т. е. к повышению ее температуры. Это может привести к таянию ледников и катастрофическому повышению уровня Мирового океана, а вместе с тем к глобальному изменению природных условий. При работе тепловых установок и двигателей в атмосферу выбрасываются вредные для человека, животных и растений оксиды азота, углерода и серы. С вредными последствиями работы тепловых машин можно бороться путем повышения КПД, их регулировки и создания новых двигателей, не выбрасывающих вредные вещества с отработанными газами.
Тепловые машины широко используют на производстве и в быту. По железнодорожным магистралям водят составы мощные тепловозы, по водным путям – теплоходы. Миллионы автомобилей с двигателями внутреннего сгорания перевозят грузы и пассажиров. Поршневыми, турбовинтовыми и турбореактивными двигателями снабжены самолеты и вертолеты. С помощью ракетных двигателей осуществляются запуски искусственных спутников, космических кораблей и станций. Двигатели внутреннего сгорания являются основой механизации производственных процессов в сельском хозяйстве. Их устанавливают на тракторах, комбайнах, самоходных шасси, насосных станциях. Тепловоз — автономный локомотив, на котором в качестве силовой энергетической установки используется тепловой поршневой двигатель внутреннего сгорания — дизельный двигатель, величина эффективного кпд которого достигает 40—45%. Применение дизельного двигателя вместо паросиловой энергетической установки паровоза обеспечивает высокий уровень кпд тепловоза (26-31%), превышающий кпд паровоза в 4-5 раз.

Билет № 14

Элементарный электрический заряд; два вида электрических зарядов, закон сохранения электрического заряда; закон Кулона. Электрическое поле: напряженность электрического поля, линии напряженности электрического поля.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

· Существует два рода электрических зарядов, условно названных положительными и отрицательными.

· Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому.. Одно и то же тело в разных условиях может иметь разный заряд.

· Одноименные заряды отталкиваются, разноименные – притягиваются.

· Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду

e =1,6 .

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов.

В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядомназывают заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона:

Взаимодействие неподвижных электрических зарядовназывают электростатическим или кулоновским взаимодействием.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ— существует вокруг электрического заряда, материально.
Основное свойство электрического поля: действие с силой на электрический заряд, внесенный в него.
Электростатическое поле
— поле неподвижного электрического заряда.
Напряженность электрического поля— силовая характеристика электрического поля.
— это отношение силы, с которой поле действует на внесенный точечный заряд к величине этого заряда.
— не зависит от величины внесенного заряда, а характеризует электрическое поле!

Направление вектора напряженности
совпадает с направлением вектора силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.

Силовые линии электрического поля — непрерывные линии, касательными к которым являются векторы напряженности эл.поля в этих точках.
Однородное эл.поле — напряженность поля одинакова во всех точках этого поля.
Свойства силовых линий: не замкнуты (идут от + заряда к -), непрерывны, не пересекаются,
их густота говорит о напряженности поля (чем гуще линии, тем больше напряженность).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector