0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генератор может работать как двигатель 12в

Коллекторные моторы 12 мм

Используйте моторы 12 мм для преобразования электрической энергии в механическую. Двигатели подойдут для приведения в движения колёс роботизированных платформ, DIY-машинок и даже в качестве гребные винтов в самодельных катерах.

Коллекторные моторы также помогут создать простой 3D-стол или другую поворотную конструкцию.

Эксплуатация мотора

Электромотор — устройство для преобразования электрической энергии в механическую. То есть устройство, на которое при подаче напряжения, начинается вращение выходного вала мотора. Моторы 12 мм относятся к коллекторным двигателям, а точнее к их подвиду — моторам постоянного тока.

В зависимости от сопротивление обмотки, коллекторные моторы 12 мм рассчитаны на разное номинальное напряжение: чем больше сопротивление, тем больше следует подавать напряжения на мотор. Для замера сопротивления обмотки, вам понадобится мультиметр.

СопротивлениеНоминальное напряжение
3–6 Ом5 В
7–14 Ом9 В
15–20 Ом12 В
21–30 Ом15 В

Но вы можете не вдаваться в подробности, мы провели все необходимые тесты и вывели номинальное напряжение в характеристиках на двигатели.

Работа двигателя в режиме торможения или перегрузки может значительно сократить срок службы мотора и привести к немедленному повреждению. Рекомендуемый верхний предел 25% от тока блокировки мотора.

Примеры работы

Рассмотрим примеры подключения и работы с моторами. Перед включением уточните номинальное напряжение конкретно вашего мотора.

Ручное управление

Для работы коллекторного мотора достаточно просто подать напряжение на его контактные колодки. При подаче напряжения в одном направлении вал крутится по часовой стрелке, в обратном направлении — против часовой.

Программное управление

Коллекторные электромоторы создают значительные помехи по цепям питания, поэтому запитывайте их от отдельного источника напряжения, а не от того который питает управляющий контроллер и датчики. Если все таки необходимо использовать один источник питания, примите меры по дополнительной защите цепи питания от помех. , для этого используются конденсаторы. Электролитические конденсаторы большой емкости защитят контроллер от пусковых провалов напряжения, а керамические конденсаторы сравнительно небольшой емкости — от помех вызванных «искрением щеток»

Если вы хотите программно управлять мотором, вам понадобиться управляющая платформа, например Arduino Uno или Iskra JS.

Но мотор нельзя подключать напрямую к управляющей плате: выводы микроконтроллера являются слаботочными, поэтому ток мотора при прямом подключении выведет их из строя. Для решения помогут драйверы посредники. Самый простой способ воспользоватся силовым ключом из линейки Troyka-модулей.

При коммуникации Troyka-модулей с Arduino или Iskra используйте Troyka Slot Shield.

Если вы хотите управлять, не только скоростью мотора, а ещё и направлением вращения, используйте H-мост.

А если хотите управлять сразу двумя моторами — обратите внимания на Motor Shield.

Подробности читайте в технической документации на конкретный драйвер:

Мощный недорогой электровелосипед на базе автомобильного генератора своими руками

Андрей делится своим рецептом приготовления велосипеда на электрическом ходу из подручных материалов. И он не пошел простым путем, заказав готовый набор с электроколесом у китайцев, а сделал двигатель из старого генератора от Жигулей.

Однажды, еще будучи обычным деревенским школьником, в автомобильном журнале я увидел небольшую заметку о электровелосипеде, построенным каким-то иностранным энтузиастом, и который умел разгоняться до 40 км/ч и имел запас хода в 70 километров. После этой небольшой заметки я бросил безуспешные попытки завести старый двигатель от бензопилы Дружба и понял, что будущее наступило. На дворе было начало двухтысячных.

Потом была учеба в ВУЗе, и первая постоянная работа. Работа была не ахти какая, 4-хдневка сменялась трехдневкой, времени было много, а денег мало, и мысли потихоньку снова возвращались к идее построить электровелосипед. Интернет был мне не так доступен как сейчас, да и он, интернет, не был завален таким количеством информации по самодельному и не очень самодельному электротранспорту, не было такого количества всевозможных комплектующих. И в голове рождались сумасшедшие идеи и фантастические конструкции из болгарок, электрорубанков, стартеров… Помню даже была идея разместить на ободе неодимовые магниты, а на перьях с двух сторон от колеса электромагниты.

Невоплощенная мысль то забывалась, то разгоралась с новой силой, но потребовалось еще лет 10 для того, чтобы она начала превращаться в реальность.

Я не пошел стандартным для многих путем — купить готовый набор и установить его на велосипед. Во-первых, потому, что не готов был тратить значительные суммы на покупку комплекта, а во-вторых, это бы точно не удовлетворило жажды конструирования и созидания. Вообще, я изначально поставил цель построить велосипед мощностью под 1 кВт с бюджетом 10 000р. Вполне амбициозная цель.

Итак, на тот момент у меня уже был «горный» велосипед Forward Sporting 103, тяжелый, стальной, с зубастым протектором, он хорошо ехал по любому бездорожью, даже по булыжникам на обочине трассы, но очень плохо ездил по гладкому асфальту, издавая почти самолетное жужжание, нарастающее с ростом скорости, протектор покрышек очень быстро съедал накат. Но он верой и правдой служит уже больше 10 лет. Конечно, это идеальный вариант для электрификации).

Из одного полезного сайта про электротранспорт узнал, что автомобильный генератор, оказывается, прекрасно работает в режиме мотора с дешевыми китайскими контроллерами для мотор-колес. В гараже как раз валялся генератор на 80 ампер от вазовской классики. Карты сошлись, старая мечта вспыхнула с новой силой, и я понял, что пора!

Тут же с одного китайского интернет-магазина были заказаны:

  1. Аккумуляторы 18650 – 2.6 а*ч, 40 шт
  2. Плата балансировки и защиты – 1шт
  3. Бессенсорный контроллер для электросамокатов на 1 квт номинальной мощности
  4. Вольт-, ампер-, ваттметр с вынесенным шунтом
  5. DC-DC преобразователь, умеющий делать из 60вольт 12

На местном базаре были куплены:

  1. Трещотка (вместе с задней осью)
  2. Цепь велосипедная
  3. Звездочка на 10 зубов от веломотора F50

В гараже были найдены звездочка от велосипеда передняя – на 48 зубов, задняя на 22 зуба, куски прямоугольных труб, болты, гайки, провода, изолента и прочая мелочь.

Изначально было решено пожертвовать рекуперацией в пользу сохранения наката и легкого педального хода, считаю эту функцию более полезной в плане увеличения пробега. Передняя звездочка от советского велосипеда теперь стала задней звездой электробайка. Левый фривил не нашел, поэтому обычная правая трещетка была переделана на левое вращение – с помощью бормашинки и алмазной шарошки были переделаны посадочные места собачек, а сами собачки развернуты в другую сторону.

Корпус трещотки немного расточен для посадки на левую сторону колеса, туда, где барабан колеса выходит за пределы фланца. У многих велосипедов без дисковых тормозов там достаточно места для установки такого самодельного фривила. У 48 зубовой звездочки была отрезана педаль, и средняя часть была выпилена болгаркой. Звезда соединена с трещоткой винтами с гайками. Вся эта конструкция крепится к колесу как задняя звездочка любого бензодырчика – длинными болтами через спицы и резиновые прокладки, изнутри в межспицевое пространство колеса вставляются полушайбы и все сжимается, крепко обхватывая с двух сторон фланец колеса.

На вал генератора нужно установить звездочку на 10 зубов, для этого я приварил ее к гайке, которая раньше крепила шкив генератора. Гайка навинчивается на вал генератора, и сверлится насквозь вместе с валом и в получившееся отверстие вставляется длинный винт м6 с гайкой на конце.

Звездочки от веломотора пришлось немного обточить бормашиной – их зубья расчитаны на более широкую цепь.

Передаточного отношения 10/48 не хватит для резвого старта, будет чрезмерное потребление энергии, я это на тот момент уже прекрасно понимал. Требуется повысить передаточное число. Готового редуктора я не нашел, различные решения на основе редукторов дрелей/болгарок отмел сразу, хоть и мощности они передают сопоставимые, но эти мощности получаются за счет высоких оборотов, мне же требовалось передавать большой крутящий момент при сравнительно низких — до 3 тыс. в минуту – оборотах.

Поэтому было решено сделать промежуточный вал.

Изначально планируемая компоновка с мотором над задним колесом была отметена. Не хотелось терять возможность возить какой-нибудь багаж, ну или закрепить там детское кресло. Нужно было разместить все в треугольнике рамы. После многочисленных примерок была изготовлена рама для двигателя и промежуточного вала.

Промежуточный вал, изготовленный из строительной шпильки, вращается в двух подшипниках, и передает вращение с правой стороны рамы на левую. Звездочки крепятся так же как на валу мотора – они приварены к гайкам, зашплинтованным на валу винтами м6.

Общее передаточное число получилось 10.56. На этом с механической частью пожалуй все.

Батарея имеет конфигурацию 13S3P- 48 вольт и емкость 7.8а*ч, собрана из 39 банок 18650.
Банки спаяны паяльником 60 вт кратковременными касаниями. В процессе одна банка зашипела – то ли перегрел, то ли в газовый клапан попала паяльная кислота, благо акумов было 40 штук, а потребовалось 39.

Электрическая часть отличается от классического электровелосипеда необходимостью постоянного питания якоря генератора — ведь мой мотор, в отличие от готового мотор-колеса, не имеет постоянных магнитов. Задачу понижения батарейного напряжения до требуемого якорю, выполняет понижающий DC-DC преобразователь, который переваривает до 60 вольт входного и выдает регулируемое выходное напряжение.

В остальном ничего необычного – батарея, контроллер, ручка газа в виде переменного резистора даже пока без возврата в исходное положение)…. Китайский ваттметр с синей подсветкой в качестве бортового компьютера для контроля разряда батареи….

Но, несмотря на то, что это все больше похоже на самоходную бомбу, это поехало, и поехало весьма неплохо. С моим весом 75 кг в первую выездку удалось разогнаться до 37,7км/ч. Ускорение получилось весьма резвое, максималка тоже устраивает. Запас хода получился небольшой — в смешанном цикле с резвыми разгонами до максималки и ездой внатяг с небольшой скоростью вокруг гаража удалось выжать 10 км без помощи педалями, впрочем для батареи это был только первый цикл заряд – разряд. Ваттметр показал 350 с чем то ватт-часов, и напряжение 40 вольт в конце цикла.

Какие выявились недостатки? Ясно, что все провода надо собрать в жгуты, это пока еще только стенд для ходовых испытаний. Цепь в первичной передаче весьма шумит, требует натяжителя-успокоителя, но скорее всего буду переделывать на зубчатый ремень. Нужна ручка газа – в планах сделать в виде курка, с концевиком, запитывающим якорь только в момент нажатия. И целого отдельного исследования требует возможность регулирования мотора током якоря — это второй канал управления двигателем. Да, у моего двигателя нет постоянных магнитов, зато есть электромагнит, индукцию которого мы можем менять в широких пределах. Преимущество ли это? Не знаю. Ведь якорь требует дополнительной электрической мощности 30-50 вт. Зато, не меняя передаточного числа механической трансмиссии, мы можем менять характеристику мотора в широчайших пределах. Повышение тока на якоре снижает обороты, но повышает крутящий момент, понижение же — наоборот, повышает обороты, но понижает момент. Может быть, получится оптимально настроить его под свою конфигурацию «железа»? Или как вариант вывести регулятор на руль и получить этакую электронную коробку передач – на разгоне и на подъемах повышать тягу, а на прямых участках и больших скоростях повышать обороты, таким образом выжимая из своей конфигурации максимум. У кого есть мысли, как можно всесторонне исследовать эту тему? Сейчас думаю над методологией.

Немного о зарядном устройстве. Моя батарея требует зарядного напряжения 54 в при токе до 3 ампер. Для зарядки был приобретен регулируемый повышающий DC-DC преобразователь – вход от 12 до 50 вольт, выход от 12 до 60.

Ему на вход подается 12 вольт выпрямленного напряжения от блока питания для светодиодных лент. Этот блок питания может выдавать до 12 ампер. Все собрано в корпусе из фанеры, сделанном на самодельном лазерном резаке, снабжено регуляторами тока и напряжения и вольтамперметром. В корпусе установлены два кулера – один работает на вход, другой на выход воздуха, таким образом, наиболее горячие части (радиаторы) обоих электронных блоков постоянно обдуваются. Зарядное устройство используется также для периодической подзарядки автомобильного аккумулятора. Весьма полезная в хозяйстве вещь получилась!

Доволен ли я результатом – более чем! Ведь при таких характеристиках удалось получить работоспособный аппарат с неплохими характеристиками с бюджетом меньше 10 000р!

Подобной компоновки я нигде на просторах интернета не встречал. Но она дает возможность каждому самодельщику за совсем небольшие деньги получить вполне неплохой электротранспорт, превосходящий по характеристикам, как мне кажется, многие серийные образцы, прикоснуться к этому увлекательному и, безусловно, прогрессивному направлению развития техники, получить радость творчества и незабываемое ощущение от езды на электротяге…

Ну и видео по теме:

Схема генератора автомобиля

    66 9 65k
    261 2 289k

Калькулятор перевода силы тока в мощность

Перевести сколько ампер у квт онлайн. Калькулятор перевода силы тока ампер в мощность ватт

Самая основная функция генераторазарядка батареи аккумулятора и питание электрического оборудования двигателя.

Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.

  1. Аккумуляторная батарея
  2. Выход генератора «+»
  3. Выключатель зажигания
  4. Лампа-индикатор исправности генератора
  5. Помехоподавляющий конденсатор
  6. Положительные диоды силового выпрямителя
  7. Отрицательные диоды силового выпрямителя
  8. «Масса» генератора
  9. Диоды обмотки возбуждения
  10. Обмотки трех фаз статора
  11. Питание обмотки возбуждения, опорное напряжение для регулятора напряжения
  12. Обмотка возбуждения (ротор)
  13. Регулятор напряжения

Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Принцип работы генератора авто

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы:

, W, R, STА.

  • Вывод нулевой точки обмотки статора: 0, МР.
  • Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  • Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  • Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.
  • Схема генератора ВАЗ-2107 типа 37.3701

    1. Аккумуляторная батарея.
    2. Генератор.
    3. Регулятор напряжения.
    4. Монтажный блок.
    5. Выключатель зажигания.
    6. Вольтметр.
    7. Контрольная лампа заряда аккумуляторной батареи.

    При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

    Схема зарядки ВАЗ с инжекторными двигателями

    Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.

    Проверка работы генератора

    Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить напряжение отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.

    Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.

    Элементарная проверка лампочкой и мультиметром

    Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.

    Включаем тестер в режим (DC) постоянного напряжения, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем галогенную лампу H4 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.

    Схема проверки генератора

    Строго не рекомендуется:

    1. Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
    2. Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
    3. Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
    4. Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.

    Надежный двигатель для ветрогенератора: электроника самодельного ветряка из подручных материалов, усовершенствования и доработка

    Обновлено: 14 января 2021

    • Электроника самодельного ветрогенератора
    • Ветряк из подручных материалов
    • Усовершенствования и доработка
    • Самодельный ветрогенератор на основе шагового двигателя
    • Ветряк из мотор-колеса
    • Генератор из коллекторного двигателя
    • Ветрогенератор из ферритовых магнитов
    • Испытания самодельного устройства
    • Рекомендуемые товары

    Изготовление ветрогенератора своими руками не ограничивается созданием одного ротора и мачты. Рабочее колесо с лопастями — это лишь устройство, принимающее энергию ветра и передающее вращательный момент на следующие в конструкционной цепочке элементы.

    Для того, чтобы устройство дало электрический ток, нужен целый комплект оборудования, последовательно выполняющего задачи по приему, переработке, накоплению и преобразованию энергии. Помимо механических частей имеется довольно обширный список электроники различного назначения, коммутационных устройств.

    Электроника самодельного ветрогенератора

    Самодельные ветряки обычно используют электронику, которую удалось собрать самостоятельно или приспособить из имеющихся готовых приборов. Исключением являются аккумуляторы, которые проще и дешевле приобрести, чем собирать своими руками. Обычный состав электроники включает:

    • генератор
    • аккумулятор
    • контроллер заряда
    • инвертор

    В большинстве случаев этот список используется полностью, хотя имеются и более простые комплекты, иногда вообще ветряк напрямую подключается к потребляющему устройству (насосу, осветительному или подобному прибору, не требовательному к стабильности напряжения). Для бытовой техники, освещения дома, радио-и телевизионных приборов требуется наличие стабильного напряжения с определенными параметрами, что обеспечивается только использованием полного набора устройств.

    Ветряк из подручных материалов

    Самодельные ветряки обычно изготавливают из тех материалов, которые удалось найти в гараже, сарае или иных доступных местах. Приобретение материалов или оборудования производится редко, так как зачастую весь процесс создания ветряка является экспериментом с неясным результатом, поэтому нести какие-либо расходы нецелесообразно. В целом, такой подход себя оправдывает, так как он дает возможность оценить перспективы и сделать выводы относительно параметров установки, необходимой для полноценного решения вопроса.

    Любой результат таких исследований дает возможность создать ветряк с нужными качествами. При этом, даже изготавливая третью или четвертую модель, умельцы практически не приобретают каких-либо материалов, обходясь старыми запасами или переделывая имеющиеся предметы. Так, в качестве лопастей для вертикальных роторов часто используются металлические бочки, разрезанные вдоль. Применяются и другие способы, не требующие почти никаких расходов, но приносящие вполне ощутимые плоды.

    Единственное, без чего никак нельзя обойтись — это определенные познания в области электротехники, опыт и навыки работы со слесарным инструментом.

    Усовершенствования и доработка

    При изготовлении ветрогенератора чаще всего применяются различные готовые устройства или узлы, определенным образом переделанные и усовершенствованные для максимального соответствия задуманным параметрам. Наиболее часто таким изменениям подвергаются двигатели или генераторы, поскольку они довольно легко доводятся до нужного состояния.

    Большинство электродвигателей способны работать в режиме генератора, и переделывать их необходимо только для оптимизации работы в тихоходном режиме, так как частота вращения ветряка низка, и даже с повышающим редуктором высоких скоростей не добиться. Поэтому производят доработку, повышающую чувствительность устройства до необходимых пределов.

    Готовые ветрогенераторы также подвергаются различным изменениям, исправляются обнаруженные в ходе испытаний недостатки, увеличиваются определенные параметры и показатели.

    Самодельный ветрогенератор на основе шагового двигателя

    Шаговые двигатели используются в принтерах, сканерах и прочих устройствах. Их можно использовать практически без всяких переделок, понадобится лишь выпрямить переменный ток, который они выдают. Для этого собирается выпрямитель по определенной схеме на 8 диодах (нужно 2, но так как двигатель 4-фазный, то используются 8 шт).

    После подключения к выпрямителю можно получить ток с напряжением, зависящим от марки двигателя (существуют образцы с напряжением 5 В, есть модели по 12 В и выше). Такого напряжения может хватить для зарядки батареи мобильного телефона, подключения местного освещения и т.п. Дополнительных устройств не требуется.

    Ветрогенератор на шаговом двигателе способен выполнять довольно ограниченную работу, но как наглядное пособие или пробный экземпляр он вполне годится. Если же объединить в одну систему несколько таких устройств, можно получить более мощный комплекс, имеющий возможность питать большее число приборов, обеспечивать освещение или иные бытовые устройства.

    Ветряк из мотор-колеса

    Мотор-колесо от старого скутера вполне может сыграть роль генератора для ветряка. Особенным достоинством такого решения является возможность установить лопасти непосредственно на обод колеса, что значительно упрощает процесс изготовления ветряка и позволяет применить довольно большой размер крыльчатки, чувствительный к ветру с небольшой скоростью. К недостаткам устройства относится ощутимое залипание, затрудняющее запуск вращения, особенно на слабых ветрах.

    Мотор-колесо представляет собой практически готовый трехфазный генератор. Он имеет хорошие показатели даже на низких оборотах, а если использовать повышающую передачу, то можно добиться весьма неплохих результатов, в частности — для зарядки АКБ. Примечательно, что из мотор-колеса изготавливают как горизонтальные, так и вертикальные конструкции ветряков, причем, вторые по своим характеристикам часто оказываются удачнее.

    Дело в том, что на вертикальных роторах (типа Савониуса) стартовый момент намного больше из-за большой площади лопасти, что увеличивает возможности запуска ветряка на слабых ветрах. Еще одним удобным моментом становится возможность установки вертикального ветряка на относительно низкую мачту. Поскольку мотор-колесо крепится непосредственно на крыльчатку, возможностей для его обслуживания при монтаже на высокие мачты, весьма немного. Доступ к генератору — большое достоинство устройства, продлевающее службу и облегчающее уход.

    Генератор из коллекторного двигателя

    Коллекторные двигатели имеют один слабый в эксплуатационном отношении узел — собственно коллекторно-щеточный. Вследствие постоянного трения графитовые щетки быстро изнашиваются и требуют замены, поскольку при вышедших из строя щетках двигатель работать не будет. Ресурс коллекторных двигателей от установки одного комплекта щеток до другого не так уж велик, что является причиной постоянного внимания за состоянием устройства и необходимости держать наготове запасной набор щеток.

    При этом, возможности такой конструкции весьма велики, при определенных условиях коллекторные двигатели способны выдавать достаточно высокие показатели. Кроме того, они не нуждаются в высоких скоростях вращения, что является еще одним большим плюсом в климатических условиях России, не отличающихся обилием сильных и ровных ветров.

    Особенности коллекторных двигателей позволяют использовать их без повышающей передачи, что снижает потери. При этом, размеры лопастей должны быть достаточными, чтобы создавать нужное пусковое усилие, так как ротор коллекторного двигателя постоянно находится под притормаживающим давлением щеток. По характеристикам наиболее подойдет вертикальная конструкция ветряка с большими лопастями, способными к созданию значительного усилия при вращении.

    Ветрогенератор из ферритовых магнитов

    Этот вариант для подготовленных людей, обладающих достаточными познаниями как в электротехнике, так и в слесарном деле. Генератор из ферритовых магнитов придется практически с нуля создавать самостоятельно, что является интереснейшей технической задачей для одних, но и неразрешимой проблемой для других. Решение вопроса возможно только при полном понимании принципа работы и устройства генератора.

    Устройство генератора на ферритовых магнитах включает неподвижный статор, состоящий из обмоток, числом кратным трем. Вращающийся ротор состоит из площадки с разнонаправленными магнитами, которые создают переменное магнитное поле и возбуждают в обмотках статора ЭДС. На первый взгляд все просто, но проблема состоит в том, чтобы все сделать аккуратно, точно и с минимальными зазорами или отклонениями. Кроме того, надо обеспечить соосность статора и ротора, защитить их от проникновения воды, пыли, устранить прочие внешние воздействия.

    Вариантов конструкции таких генераторов довольно много, лучшие образцы изготовлены на довольно солидной производственной базе. При этом, имеются и совсем кустарные изделия, собранные на кусках фанеры, залитые эпоксидной смолой, которые способны демонстрировать вполне приемлемые результаты.

    В настоящее время для изготовления таких устройств активно используются неодимовые магниты, обладающие магнитным полем, многократно превосходящим ферритовые образцы. Возможности генератора на таких магнитах гораздо выше, что сразу же было высоко оценено конструкторами.

    Практически все перешли на использование неодимовых магнитов, хоть это и потребовало некоторого изменения конструкции — количества витков обмоток, расстояние между ними и т.д. Результаты, которые показывают такие генераторы, высоки, они делают ветрогенераторы более перспективными устройствами.

    Испытания самодельного устройства

    Испытания готового ветрогенератора следует производить при полностью собранной, установленной и надежно закрепленной конструкции. Искушение попробовать ветряк в деле велико, часто заставляет людей совершать непродуманные действия, в результате чего возникают поломки, разрушения, травмы.

    Проверку на работоспособность отдельных узлов (например, генератора) можно произвести при помощи электродрели с регулируемой скоростью вращения. Возможности ветряка также могут испытываться отдельно, без присоединения генератора, чтобы получить данные о его рабочих качествах без нагрузки. Все остальные испытания или пробы требуют качественной сборки или подключения по всем правилам.

    Самодельный генератор на 220 В с использованием 2-х тактного двигателя

    В этой статье вы узнаете как своими руками сделать генератор на 220 В с использованием 2-х тактного двигателя. Данный генератор можно использовать для различных целей, дома для освещения и подключения не больших нагрузок, на природе, для освещения палатки или найти другое применение. Он обладает не большими габаритами, а используемые детали не очень дефицитные.

    Собираем необходимые компоненты, инструменты

    Данный агрегат состоит из следующих деталей:

    • Двигатель от мотокосы;
    • Двигатель постоянного тока – 12-24V;

    Из инструментов нам понадобятся:

    • Дрель или шуруповерт + сверла и крестовая насадка под саморезы;
    • Циркульная пила или лобзик (для любителей ручного труда подойдет ножовка);
    • Вольтметр;
    • Отвертки, пассатижи, малярный нож или ножницы;
    • Угольник, рулетка.

    Принцип действия динамо-генератора

    Основа нашего генератора – двигатель постоянного тока, который способен работать в режиме генератора за счет превращения механической энергии в электрическую посредством явления электромагнитной индукции. Вращение якоря в магнитном поле первичной обмотки двигателя постоянного тока обеспечивает двигатель от мотокосы. При вращении в двигателе постоянного тока в режиме генератора образуется переменная ЭДС, которая через щеточный коллектор преобразуется в постоянное напряжение.

    Приступаем к сборке агрегата

    Этап первый: закрепляем двигатель от мотокосы

    Для начала берем отрезок доски и обрезаем ее предварительно по размеру нашей станины. Желательно брать увесистый материал, чтобы наше оборудование имело прочную и надежную основу.

    Размечаем положение двигателя от мотокосы. С помощью шаблона из бумаги размечаем точно отверстия, засверливая их дрелью или шуруповертом.

    Примеряем оба двигателя на станине. Отсоединяем топливный бачок, и на посадочные места закрепляем двигатель от мотокосы.

    Этап второй: крепим движок постоянного тока

    Размечаем положение движка. Расстояние от обеих валов двигателей должно быть несколько сантиметров, чтобы избежать трения между ними.

    Центруем валы наших движков. Расхождение по центрам проще всего откорректировать какими-либо прокладками, или же попросту подправить посадочное место на деревянной станине. Сделать это можно обычной стамеской. Чем меньше будет люфт между валами, тем меньше будет вибрация от агрегата и износ движущей части.

    Размечаем патрубки. Чаще всего валы двигателей различаются по размеру диаметров. Это также поправимо, если в качестве соединительных патрубков использовать ПВХ шланги разных диаметров. Их гибкость поможет сгладить мельчайшую неточность в оцентровке валов. В нашем случае автор использовал два шланга разного диаметра, вставив один в другой.

    Отрезав патрубки нужной нам длины, насаживаем с обеих сторон три хомута, поджимая их отверткой.

    Закрепляем двигатель постоянного тока на саморезы, проложив их предварительно шайбами. Валы соединяем от руки и поджимаем хомуты отверткой.

    Теперь можно закрепить и топливный бачок. Справиться с этой задачей не сложно, используя длинный саморез и обрезанный колпак от дюбель-гвоздя. Не забываем подсоединить топливные трубки.

    Заведя топливный двигатель стартером, измеряем напряжение на выходе вольтметром. Отверткой регулируем подачу топлива, и количество оборотов, от которого и зависит напряжение. Ориентируясь по номиналу инвертора, выставляем выходящее напряжение с небольшим запасом.

    Этап третий: подключаем инвертор

    Зачищенные предварительно концы кабелей от двигателя постоянного тока закрепляем на клеммах инвертора. Индикатор питания сразу покажет активность прибора.

    Простой контролькой (лампочкой с отрезком кабеля и вилкой на конце) проверяем работу нашего чудо-генератора.

    Для подключения электродвигателя к инвертору используем клеммы.

    Этап четвертый: кнопка выключения двигателя

    Поскольку ведущий у нас двигатель, создающий механическое вращение, ему необходим выключатель. Кнопка выключения идет в комплекте с устройством, поэтому ей необходимо лишь найти удобное место.

    Этап пятый: делаем кожух-рамку

    Изготавливаем защитную рамку из полипропиленовых труб диаметром 25-32мм, делая в станине отверстия перьевым сверлом.

    На углах соединяем ее с помощью полипропиленовых фитингов.

    Если нет сантехнического сварочного аппарата, конструкцию можно соединить на специализированный клей для ПП труб.

    Такая рамка также поможет и в переноске устройства.

    Ну, а для устранения шума от вибрации нашего устройства можно на тыльной стороне станины закрепить 4 подпятника, сделав их как показано на фото, из отрезков старой велосипедной камеры.

    Этап шестой: пусковой аккумулятор

    Чтобы лишний раз не дергать стартер топливного двигателя, автор видеоролика применил литий-полимерный аккумулятор (LiPo) для кратковременного запуска двигателя постоянного тока. Это сравнительное новое устройство действительно может быть мощным, и выдержать большое количество рабочих циклов при минимальной потере емкостной мощности. Таким образом топливный двигатель запускается электрическим, при этом его стартер остается как запасной вариант.

    Подключаем выходящие контакты аккумулятора к клеммам инвертора через пусковой тумблер, обвязывая шлейф из проводов нейлоновыми стяжками. Гнездо для зарядки можно вывести сбоку, чтобы удобно было его подключать для зарядки.

    Также закрепляем и кнопку отключения топливного двигателя

    Этап седьмой: пробный запуск агрегата

    Проверив все контактные группы и крепеж сборных элементов, запускаем агрегат. Кнопки запуска и отключения двигателей должны работать безупречно. Стоит отметить, что пусковой аккумулятор используется всего на несколько секунд, а затем отключается.

    Советы по эксплуатации

    Для продолжительной и безопасной работы двигателя постоянного тока и инвертора никаких особых условий не требуется, кроме разве что защиты от влаги и скачков напряжения.

    Что касается литий-полимерного аккумулятора, то его недопустимо глубоко разряжать (менее 3,3 В) и ни в коем случае не допускать перегрева выше 60 градусов цельсия. Зарядка таких устройств также производится специализированными устройствами, не допускающими перезаряда, а перед использованием на холоде обязательно прогреть при комнатной температуре.

    Топливные двигатели также нуждаются в соблюдении правил эксплуатации: правильном подборе горючей смеси, очистке воздушных и топливных фильтров, недопущении перегрева двигателя и т.д. В закрытом помещении выхлопным газам от такого двигателя необходимо обеспечить вентиляцию.

    А в остальном, такое оборудование, собранное своими руками, сможет прослужить длительное время, снабжая драгоценным электричеством на даче, рыбалке или просто на отдыхе за городом!

    Смотрите видео

    голоса
    Рейтинг статьи
    Читать еще:  Ваз 2106 заклинило двигатель причины
    Ссылка на основную публикацию
    Adblock
    detector