28 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гравитационный двигатель или почему не могут собрать

Глава 7: Креативные испытания или Гравитационный двигатель

В то время как все мои усилия направлены на строительство модульного корабля и сбор ресурсов для этого, я решил провести серию простых креативных испытаний в космосе, которые бы дали ответы на беспокоящие меня вопросы.

А именно:

  • Какие движители лучше использовать?
  • Как именно работает физика в Space Engineers?

Проверка ионных двигателей

В итоге, мой импровизированный корабль полетел ровнехонько по прямой. Из чего можно сделать вывод, что при расчете тяги двигателя центр масс никак не учитывается. Это несколько печально, но зато сильно упрощает конструирование.

Заключение: ставим двигатели там, где нам удобнее, не обращая внимание на симметрию и центр масс.

Проверка гравитационного движителя

Гравитационный двигатель представляет собой комбинацию двух модулей на одной конструкции:

  • генератор направленного гравитационного поля (назовем для упрощения ГНГ)
  • искусственной массы (ИМ)

Важно, чтобы объем гравитационного поля охватывал блок ИМ. Получается, что ИМ перемещается полем и тянет за собой ГНГ, таким образом постоянно находясь в гравитационном поле. Расход энергии существенно снижается, если уменьшить размер поля до минимально возможного для данной конструкции.

Далее я провел серию экспериментов.

В большинстве опытов использовалась простая симметричная конструкция с аккумулятором по центру и двумя гравитационными двигателями (один ГНГ и один ИМ в каждом). Тяга регулировалась силой гравитационного поля.

Исходные условия:

    Две стандартные конструкции.
  • Первая (справа)
    • Зона гравитационного поля охватывает только свой ИМ
    • Оба двигателя включены
    • Тяга на двигателях одинаковая 0.1g
  • Вторая (слева)
    • Зона гравитационного поля одного ГНГ охватывает оба ИМ
    • Второй ГНГ выключен
    • Тяга 0.1g

Результат:
Конструкции ускоряются по прямой с одинаковым ускорением. Следовательно расположение ГНГ не имеет значения. Один ГНГ с двумя ИМ работает так же, как и два ГНГ с индивидуальными ИМ. Исходные условия:

    Две стандартные конструкции.
  • Первая
    • Зона гравитационного поля охватывает только свой ИМ
    • Оба двигателя включены
    • Тяга на двигателях одинаковая 0.1g
  • Вторая
    • Зоны гравитационных полей обоих ГНГ охватывают оба ИМ, т.е. пересекаются
    • Тяга 0.1g для каждого ГНГ

Результат:
Вторая конструкция ускоряется быстрее. Следовательно влияние нескольких гравитационных полей на ИМ суммируется. Исходные условия:

    Две стандартные конструкции.
  • Первая
    • Зона гравитационного поля охватывает только свой ИМ
    • Оба двигателя включены
    • Тяга на двигателях одинаковая 0.1g
  • Вторая
    • Зоны гравитационного поля обоих ГНГ охватывает оба ИМ, т.е. пересекаются
    • Тяга 0.05g для каждого ГНГ

Результат:
Конструкции ускоряются по прямой с одинаковым ускорением, что подтверждает выводы эксперимента 6. Исходные условия:

  • Стандартная конструкция
  • Зона гравитационного поля первого ГНГ охватывает только свой ИМ
  • Зона гравитационного поля второго ГНГ охватывает оба ИМ
  • Оба ИМ включены
  • Тяга на ГНГ одинаковая

Результат:
Конструкция ускоряется по дуге, начиная вращение, что дополнительно подтверждает принцип суперпозиции.
Таким образом, можно сделать следующие выводы:

  • Расположение ИМ относительно центра массы имеет значение
  • Уменьшение размера поля ГНГ существенно экономит энергию
  • Применение гироскопа, настроенного по умолчанию, несколько сглаживает паразитное вращение, но полностью его не исключает
  • Увеличение количества ИМ в гравитационном поле одного ГНГ увеличивает ускорение
  • Увеличение количества ГНГ, влияющих на один ИМ, увеличивает ускорение, т.е. действие гравитационных полей суммируется
  • Применение схемы, в которой все ГНГ влияют на все ИМ, обеспечивает максимальное ускорение
  • Применение отдельных гравитационных двигателей (ГНГ плюс ИМ) с разной тягой (сила гравитации) может быть использовано для стабилизации разгоняемого объекта со смещенным центром массы. В этом случае, чем дальше от центра массы находится такой стабилизатор, тем больше его влияние за счет увеличения плеча. При этом ИМ вполне может одновременно работать как основной движитель в общем поле, а индивидуальный ГНГ в этом случае создает дополнительный стабилизирующий момент, который может быть как отрицательным, так и положительным
  • Можно применять специально настроенный на компенсацию гироскоп, включая и отключая его вместе с гравитационным приводом. Это намного проще чем предыдущий метод.

>

ЛитЛайф

Жанры

Авторы

Книги

Серии

Форум

Фролов Александр

Книга «Новые источники энергии»

Оглавление

Читать

Помогите нам сделать Литлайф лучше

  • «
  • 1
  • 2
  • .
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • .
  • 71
  • 72
  • »
  • Перейти

Итак, гравитационное поле не экранируется, но его можно частично или полностью компенсировать другим силовым полем, например, магнитным или электрическим, на нужном участке траектории движения рабочего тела. На рис. 15 показана такая конструкция, предложенная Профессором Дудышевым Валерием Дмитриевичем, Самара.

Известный современный автор-разработчик подобных конструкций, Михаил Федорович Дмитриев, создал магнито-гравитационный двигатель, рис. 16. Это машина с внешним управлением отклонениями элементов постоянными магнитами (или электромагнитами) в левой части цикла вращения, внутренним инерционным или активным (внутренним или внешним) отклонением элементов в правой части цикла и суммированием этих отклонений на устройствах однонаправленного вращения. Патент РФ на полезную модель № 81775.

На рис. 17 показано фото установки, прислано им для публикации в данной книге в декабре 2010 г. Сайт Михаила Федоровича Дмитриева можно найти здесь gravitationalengme. com

Важное замечание по конструированию «самовращающихся колес»: мы имеем дело с вращением, поэтому это не только гравитационные, но гравитационо-центробежные машины, как их называет Профессор Эверт, Германия (Alfred Evert). При их конструировании и компьютерном моделировании, надо задавать скорость вращения, и учитывать влияние центробежной силы на положение рабочих элементов. На сайте Профессора Эверт www.evert.de можно найти полезную информацию по данной теме.

Отметим другие, менее известные методы, которые также имеют свое теоретическое обоснование и пути технической реализации предложенных методов.

Название «гравитационные диоды», по аналогии с электротехническими диодами, говорит само за себя. Это детали конструкций машин и механизмов, сделанные из вещества, имеющего анизотропные гравитационные свойства. Предметы из данного вещества в разной степени взаимодействуют с гравитационным полем, с разных направлений в пространстве. При взвешивании такого «гравитационного диода» с разных сторон, мы получим различные величины силы веса, рис. 18.

Технология изготовления таких веществ пока не обсуждается, но их применение легко можно себе представить в качестве рабочих элементов роторов машин и электрогенераторов, способных постоянно вращаться в «потоке энергии» гравитационного поля, рис. 19.

Согласитесь, идея очень напоминает обычное колесо водяной мельницы, вращаемое потоком падающей воды: в левой части ротора «гравитационные диоды» легче, а справа они тяжелее.

В сравнении с потоком падающей воды, мы не очень далеки от истины. Со времен Фатио (Fatio) и Ле Саж (Le Sage), примерно 1748 год, в кинетической теории эфира, гравитация и вес тел рассматриваются, как силовое воздействие потока эфирных частиц, втекающих из окружающего пространства в центр масс планеты. При использовании «гравитационных диодов» или других инженерных решений, можно заставить работать этот поток частиц, имеющих определенную кинетическую энергию.

Существуют разные конструктивные хитрости, которые позволяют создавать асимметрию взаимодействия в разных участках траектории движения грузов. На рис. 20 показана схема из патента Украины № 62956 на «Самоподвижный механизм». В нижней части ротора, благодаря элементу конструкции 20, рабочее тело должно переходить на орбиту малого радиуса.

Авторы похожих изобретений полагают, что суммарная работа, производимая всеми элементами, находящимися «на большом плече» рычага, может быть больше, чем необходимая работа по переводу одного элемента из положения на большом радиусе в положение на малом радиусе. Элементы переводятся в нужное положение поочередно. Другими словами, действует принцип: «Один за всех, все за одного!» Фиксация элементов на роторе в крайних положениях может обеспечиваться разными способами, а современные методы, например, электромагнитные защелки с внешним управлением от электронной схемы, позволяют ее реализовать в простом и надежном исполнении.

Полезное применение силы гравитации мы также можем найти в изобретениях, использующих архимедову силу и другие эффекты в воде. Отметим проекты Маркелова Василия Фотиевича, Санкт-Петербург. Схема из его Патента РФ № 2059110 показана на рис. 21.

Патенты по конструкции гидротурбины Маркелова требуют внимательного изучения, как перспективный способ получения энергии в промышленных масштабах. По данной теме есть российские и зарубежные аналоги. Турбина генератора Маркелова работает за счет движения (кинетической энергии) потока воды снизу вверх, увлекаемого всплывающими пузырьками газа. Существует много нюансов, которые надо учитывать при конструировании данной машины.

Эффективность зависит от высоты водяного столба, плотности жидкости и других факторов, и может достигать в простых конструкциях более 1000 %. Подробно про данное изобретение опубликована статья В.Ф.Маркелова в журнале Новая Энергетика № 1 (16) 2004 год.

В патенте Маркелова показан вариант конструкции без турбины, в ней на половине цикла вращения используется Архимедова сила, создаваемая при наполнении пузырьками газа лопастей ротора, рис. 22. Применение данного способа в промышленных масштабах, в машинах мощностью сотни киловатт, не требует строительства огромных емкостей с водой. В таких случаях, целесообразно использовать незамерзающие природные водохранилища, по схеме, показанной на рис. 22.

Читать еще:  Что такое турбированный двигатель внутреннего сгорания

Интересная схема показана на рис. 23. Две несмешивающихся жидкости с разной плотностью, создают различные условия для рабочего тела (большую или меньшую архимедову силу).

Несомненно, шарики с правильно подобранной плавучестью (плотностью) в масле будут тонуть (справа), а в воде – всплывать (слева). Однако, при конструировании реальной машины, трудно найти способ, чтобы жидкости не смешивались в процессе работы.

Принципиальная схема ротора с двумя дисками показана на рис. 24. Это вид сверху, корпус и другие детали устройства не показаны на схеме.

Принцип работы предлагаемого двигателя: вода или другая жидкость поднимается вверх, против силы тяжести, за счет капиллярного эффекта (эффекта смачивания), так как поверхности двух дисков в одной части устройства расположены ближе, чем в другой части устройства. Поднятие воды сопровождается поворотом ротора, который стремится прийти в положение равновесия. Интересная особенность конструкции – две оси вращения не являются параллельными.

Современный вариант двигателя, использующего гофрированный корпус, предложил Батырбек Исмаилов. Двигатель называется «Ак Эмгек», что в переводе на русский означает «чистая работа» или «честная работа».

Автор работает преподавателем экономики в Киргизском Аграрном Университете, информация 2010 года. Прототип показан на фото рис. 25. Внутри ротора, состоящего из нескольких пластин, соединенных гофрированным корпусом вместе, находится жидкость.

Гравилёты: реальность и фантастика

Гравилеты представляют собой летательные аппараты, использующие для перемещения в пространстве силы гравитации и состоящие из двух взаимопритягивающихся масс. Это определение касается научно устоявшегося представления об этих аппаратах, хотя в публикациях термин «гравилеты» обычно понимается более обобщенно — как любой аппарат, управляющий гравитацией любым способом.

Имеется два взаимодополняющих, но не полностью совместимых основных объяснения гравитации, плюс множество альтернативных и малоизвестных объяснений, которые мы пока не будем рассматривать. Исаак Ньютон, первый физик, описывал гравитацию как притяжение между двумя массами. Принцип относительности общей теории Альберта Эйнштейна предлагает, что масса фактически вызывает пространственно-временную деформацию вокруг себя. Обе теории объясняют, почему падают предметы на Землю.

Ученые рассматривают теорию Эйнштейна как более всеобъемлющую, потому что она объясняет также, почему свет- который не имеет массы — отклоняется в сильных гравитационных полях. Подобный взгляд на гравитацию делает из этого нечто большее, чем характеристику Вселенной. По этой причине многие ученые рассматривают как нелепость идею создания любых антигравитационных устройств. Многие, но не все!

Если плотности двух притягивающихся тел будут значительно отличаться друг от друга, то вся система из двух механически связанных между собой масс придет в движение в сторону более плотного из них. Лучше всего возникающие при этом эффекты просчитал и результаты опубликовал Г.Р.Успенский (ЦНИИмаш, факультет космонавтики МАИ), причем эти расчеты не вызывают нареканий у специалистов. Г. Успенский создал теорию и проект собственного гравилета, и планировал во время полета солнечного зонда вблизи Солнца уточнить некоторые положения теории гравитации для проверки работоспособности гравитационных движителей. И, по его словам, в конце 2001 года получил самые обнадеживающие результаты.

Инженер-механик, член Академии изобретателей, творческих и научных работников Валерий Акинин предлагает развитие так называемого «гантельного» гравилета. Пусть имеется система из двух одинаковых грузов и жесткой связи между ними, ориентированная горизонтально. Теперь внимание: если развести грузы на большее, чем вначале, расстояние, то вес конструкции. уменьшится! Это было известно раньше.

Акинин предложил не раздвигать грузы, а вращать конструкцию вокруг горизонтальной оси, перпендикулярной связке. При этом нужным образом будут меняться проекции отдельных гравитационных сил на ось системы, что, собственно, и требуется. Теоретически в качестве грузов можно представить опять-таки атомные ядра, электроны и так далее.

Однако помимо классического «двумассового» гравилета, известно огромное количество других проектов: от аппаратов, «генерирующих с помощью теплового потока гравитационные волны» (А. Щеглов) до запряженных в особую торообразную узду черных дыр (Казыкин из Калуги, И. Иванченко).

Магнитогравилеты — аппараты, в которых, по представлениям авторов, получение тяги или управление гравитацией достигается за счет особых манипуляций с магнитным полем. Такие проекты, к примеру, предложили американцы Г.Баугон, Г.Джонсон, британцы Роберт Адаме совместно с Г.Аспденом. Генеральный директор ТОО «Новая цивилизация» В.В. Миронов пытается сделать гравитационный двигатель на основе «кольца Вейника» из разнородных металлов с целью получения возможности управлять гравитационным полем возле Земли или других космических тел.

Американец Беннет предложил получать тягу за счет взаимодействия электромагнитного и гравитационного полей, и хотя идея на первый взгляд и кажется нереализуемой, тем не менее автор получил на эту разработку сразу два патента. Из успешных экспериментов известны опыты по «выявлению аномальной потери массы у магнитов во время падения», проведенные физиком Келли.

Электрогравилеты — это аппараты, в которых, по представлениям авторов, создание тяги или управление гравитацией осуществляется за счет каких-либо особых манипуляций с электромагнитным полем.

Физики В.В. и В.Я.Васильевы (Обнинский институт ядерной пергетики) считают, что гравитацией можно управлять с помощью резонансных взаимодействий миллиметровых электромагнитных волн. Занимался проектированием электрогравитационных двигателей и один из основоположников космонавтики, доктор Роберт Хатчингс Годдарт, который даже получил приоритет на один из таких двигателей в 1920 году.

Из успешных экспериментов известны опыты японского физика Иономата, проводившиеся по «аномальному обезвешиванию электромагнитных катушек». Несколько заслуживающих доверие экспериментов, на которых присутствовал и автор обзора, провели Е.Д.Пронин (бывш. сотр. НПО «Энергия»), а также физики С.М. и О.С.Поляковы из Фрязина Московской области.

В опытах был получен небольшой по величине уровень тяги. Автор этого обзора участвовал в экспериментах, сделал соответствующие приборные замеры и видеозапись и составил собственный отчет о физическом происхождении тяги.

Готовятся также опыты физика И.М.Шахпаронова (бывш. сотрудник Института им. Курчатова), который уже изготовил генератор излучений Козырева-Дирака и исследовал последствия действия этого генератора на вещество и возможность генерации им гравитационных волн.

Защитный экран, не пропускающий или частично пропускающий гравитационные волны, по мнению некоторых физиков, мог бы способствовать получению нескомпенсированного момента и создания тяги для полета. Корпускулярные и некоторые другие теории предполагают возможность создания способов экранирования гравитации или изменения ее знака (отталкивание вместо притяжения). Не вызывает сомнений предположение, что если полностью экранироваться от одного направления, то притяжение даже далеких звезд неуклонно заставит корабль лететь в противоположном направлении. Среди подобных проектов можно выделить работы следующих изобретателей.

В 1996 году инженеры А.В. Мурлыкин и С.А.Михалев (МАИ, фирма «Амур») предложили идею, якобы обеспечивающую экранизацию части веса конструкции. Предполагалось, что материал определенной плотности способен экранировать часть веса материала другой плотности. Для проверки эффекта механик Н.Сорокин (МАИ) изготовил два металлических изделия с высокой плотностью каждое весом в 1 грамм: оболочку с хорошо подогнанными стенками и вкладываемый внутрь ее шарик.

На первых же научных чтениях им. Зигеля в Москве С.Михалев объявил, что продемонстрирует «доказательство полета летающей тарелки», прочитал доклад и только затем продемонстрировал два шарика и пообещал, что при точном взвешивании шариков порознь и вложенных один в другой обязательно обнаружится разница. Проведенный эксперимент показал полное отсутствие эффекта.

Особой популярностью среди теоретиков гравилетов пользуется не теория всемирного притяжения, а теория отталкивания, согласно которой тела прижимает к планетам суммарная сила отталкивания от той части Вселенной, что не экранирована планетой или иным экраном.

Принцип действия антигравилетов лучше всего описан американцем Р. Форвардом в 1991 году в его проекте «Nullor». Представьте себе два огромных массивных кольца диаметром от 97 до 970 м и находящийся между ними в открытом космосе отсек полезной нагрузки. Верхнее кольцо — из обычной сверхплотной материи — притягивает к себе этот отсек и нижнее кольцо, в то время как нижнее отталкивает и отсек, и верхнее кольцо. При этом вся система должна ускоряться в одном направлении, регулировка ускорения производится простым изменением расстояния между кольцами.

Одно «но» — нижнее кольцо должно состоять из гипотетической антиматерии. Неясно, как произвести огромное кольцо из антивещества. Большую проблему представляет опасность соприкосновения колец, могущее привести к мощнейшему взрыву или (если аннигиляция твердых тел будет далеко не столь катастрофичной, как, например, газовых облаков) к микровзрывам на поверхности соприкосновения, которые разрушат и растолкнут кольца.

Читать еще:  Что за двигатель gamma g4fc

Существуют, однако, проекты более безопасные и. ешс более гипотетические. В начале 90-х годов изобретатель Линевич, бывший сотрудник авиаремонтного предприятия, подал около 50 заявок на изобретения, в том числе на гравиинерционный двигатель. По всем был получен отказ «по причине нарушения известных законов природы». В 1991 году он написал работу «Явление антигравитации физических тел», предложил проект магнитоэлектрической ДУ для космических аппаратов, способной работать на отходах ядерной промышленности.

В 1992-1993 годах на заводе «Аскольд» в Арсеньеве по его проекту строилась «экспериментальная установка для изучения антигравитационных явлений». Э.Линевич не раскрыл каких-либо подробностей своего изобретения. К сожалению, строительство экспериментальной установки не было закончено, сам автор в 1999 году эмигрировал в США.

С начала 90-х годов над проектированием антигравитационного излучателя работал инженер Евгений Дмитриевич Пронин, бывший конструктор радиосистем в НПО «Энергия», ставший мастером по изготовлению музыкальных скрипичных инструментов. Е. Пронин имеет богатейший опыт в конструировании сложнейших радиосистем. Именно он когда-то собирал один из первых в Москве телевизоров, но с 80-х годов стал идеологическим противником использования радиоволн «из экологических соображений» и именно поэтому занялся работами в области гравитации. По словам Пронина, ему удалось создать собственный проект гравидвигателя-излучателя, некий «пистолет», способный на расстоянии уменьшить вес предметов.

Присутствовавший при испытаниях антигравитационного излучателя эксперт «Космопоиска» А.Доброгаев подтвердил, что облученные тела действительно становились ненамного легче, но сам Доброгаев сомневался в чистоте эксперимента.

В 1993 году стало известно об успешном испытании антигравитационного движителя B.C. Гребенниковым (Краснообск, Новосибирская область), членом Французского энтомологического общества им. Фарба, который, согласно публикациям, успел даже осуществить самостоятельный пилотируемый полет на левитирующей платформе.

Энтомолог вел работу по изучению секретов устройства тела насекомых и открыл у них эффект полостных структур (ЭПС). С 1988 года проводя работу по разгадке принципа полета майского жука, он обратил внимание на то, что многие хитиновые покровы обладают ритмичной микроструктурой и микроузором, которые, по мысли Гребенникова, благодаря эффекту форм придавали телу насекомого левитационные свойства.

Позже он выдвинул идею постройки гравитодвигателя на основе знания секретов жука и соорудил деревянную платформу размером примерно 0,5×0,5 м с подложкой из «материала жука», с управляющей блок-панелью и рукояткой. В ночь на 18 марта 1990 года, по словам Гребенникова, он успешно испытал антигравитационную платформу с движителем и сумел осуществить самостоятельный пилотируемый полет на левитирующей платформе по маршруту Краснообск-Академгородок, далее до Северо-Чемского жилмассива и через Затулинку — аэропорт Толмачево вернулся в Краснообск. Его статья «Ночной полет на гравитолете» в местной газете позже была перепечатана «Техникой-молодежи» и многократно цитировалась в других изданиях.

После того как автор этого обзора связался с изобретателем, эти сведения не подтвердились. В. Гребенников с момента публикации 1993 года в течение нескольких лет проявлял крайнюю подозрительность ко всем, интересующимся его изобретениями. На сотрудничество с производителями и спонсорами не шел под предлогом, что обнаружил антигравитационные свойства только у одного вида насекомых, находящихся на грани исчезновения, и очень волнуется за судьбу этого вида в случае раскрытия своей тайны. В целом об изобретении Гребенникова сложилось впечатление как о не очень качественной дезинформации.

Между тем над практическим решением лабораторного подтверждения явления антигравитации в настоящее время работают инженер М.Холверда и японские физики Т. Хашида и X. Танака совместно с X. Хайясаки.

Еще один класс устройств получают тягу путем экранирования по некоторым направлениям сил давления.
В начале 90-х над этой проблемой работал А.К.Титатренко (МАИ). Работа осталась незаконченной, А. Титаренко был убит в 1993 году.

В 80-90-х годах экспериментами по созданию спиралевидных статоров занимался изобретатель, физик Б.П.Додонов, которому удалось создать несколько установок со спиралевидно-прямыми экранами диаметром до 6 метров. Материал — металл или дерево. Додонов даже запатентовал идею создания такого двигателя (патент № 2005505 от 1991 на «двигатель, использующий космическую энергию»).

После его смерти в 1998 году продолжатели и коллеги стали довольно успешно эксплуатировать установки Додонова под названием «Корбио» для лечебных целей.

В подготовке экспериментов Б.Додонова автору этого обзора неоднократно приходилось лично участвовать и убедиться в том, что роторы на подвеске внутри додоновских статоров хоть и медленно, но начинают вращаться. Что касается объяснения эффекта (Додонов считал, что его опыты со спиралевидным экраном-статором служат для демонстрации «всемирного отталкивания»), то истинная его причина до сих пор неочевидна. Более понятна пока лишь возможная сфера применения эффекта: для создания тяги в летательных аппаратах он малопригоден из-за большой массы статора (легкие статоры неэффективны), но способен «работать» в энергоустановках (из-за большого веса это могли бы быть стационарные установки).

О таких проектах можно было бы сказать, что они используют силы отталкивания (например отталкивания эфирного ветра), но никак не силы антигравитации. Поэтому проектами антигравилетов правильнее было бы назвать совсем другие идеи.

Вадим Чернобров, «На грани невозможного»

Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен

Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.

Гравитационный двигатель

Использование: энергетика. Сущность изобретения: двигатель содержит массивный обод 2, который охватывает ступицу 3 и связан с размещенными на ступице объемными элементами в виде цилиндров 4 или сильфонов, способными изменять радиальные размеры под воздействием давления рабочего тела в виде газа или жидкости. Ступица 3 является одновременно золотником регулирующего устройства, содержащего перегородку 6, клапаны 16, входную 7 и выходную 8 полости, сообщающиеся соответственно с входным 9 и выходным 10 патрубками. При подачи рабочего тела через входной патрубок 9, входную полость 7 золотника и отверстия 14 в дне объемных элементов, связанных с входной полостью, обод перемещается в радиальном направлении, выводится из равновесного положения и под действием избыточной силы тяжести, воздействующей на одну сторону обода, приводится во вращение, которое передается на вал 1 двигателя. Неравновесность обода постоянно поддерживается при его вращении за счет опорожнения объемных элементов по другую сторону от оси 0 0 ротора двигателя. 4 з.п.ф-лы, 3 ил.

Изобретение относится к машиностроению, в частности к двигателям, а именно к гравитационным двигателям.

Известен гравитационный двигатель, содержащий ротор в виде водяного колеса, размещенного на опорах с возможностью свободного вращения на горизонтальном валу, на ободе которого установлены ковши, колесо имеет постоянную одностороннюю неуравновешенность относительно оси за счет заполнения ковшей водой с одной его стороны [1] Наиболее близким к предлагаемому по совокупности признаков является гравитационный двигатель, содержащий размещенный на опорах с возможностью свободного вращения на горизонтальном валу ротор, на ступице которого равномерно по окружности установлены объемные элементы, выполненные с возможностью возвратно-поступательного перемещения в радиальных направлениях и соединенные с грузами, и регулирующие устройства подачи рабочего тела в объемные элементы [2] Указанный двигатель имеет существенные недостатки, основные из которых сводятся к тому, что в нем содержится нагреватель с линзой большого размера, у которого в качестве источника энергии используются солнечные лучи, применяются резервуары с жидкой углекислотой, которая используется для охлаждения объемных элементов, выполненных в виде радиальных цилиндров. Все это обуславливает сложность устройства, зависимость работы двигателя от погодных условий и времени суток, приводит к низкой удельной мощности, приходящейся на массу двигателя, и малой экономичности, требует применения дорогостоящего рабочего тела в виде жидкой углекислоты, которая применяется как расходный материал.

Цель изобретения упростить устройство, повысить экономичность и надежность действия независимо от погодных условий и времени суток, увеличить удельную мощность.

Для этого в гравитационном двигателе, содержащем размещенный на опорах с возможностью свободного вращения на горизонтальном валу ротор, на ступице которого равномерно по окружности установлены объемные элементы, выполненные с возможностью возвратно-поступательного перемещения в радиальных направлениях и соединенные с грузами, и регулирующие устройства подачи рабочего тела в объемные элементы, груз выполнен в виде обода тороидальной формы с внутренней кольцевой опорной направляющей поверхностью, опирающейся на торцовые части объемных элементов, связанных с регулирующим устройством подачи рабочего тела от внешнего источника с избыточным давлением по сравнению с окружающей средой, причем обод установлен эксцентрично относительно оси вращения ротора.

Объемные элементы выполнены в виде цилиндров с поршнями, штоки которых установлены с возможностью контактной связи с ободом.

Объемные элементы выполнены в виде сильфонов, торцовые части которых установлены с возможностью контактной связи с ободом.

Контактная связь каждого объемного элемента с внутренней кольцевой опорой направляющей поверхностью обода выполнена в виде ролика, соединенного с объемным элементом.

Читать еще:  Ваз 21124 двигатель схема подключения

Регулирующее устройство подачи рабочего тела выполнено в виде цилиндрического золотника с входной и выходной полостями и установленного с возможностью вращения вместе со ступицей, при этом входная и выходная полости сообщены соответственно с входным и выходным патрубками, в цилиндрической стенке золотника выполнены отверстия, сообщающиеся с полостями объемных элементов, одна из торцовых стенок золотника жестко соединена с его цилиндрической стенкой, другая неподвижна и жестко соединена с входным и выходным патрубками, а золотник выполнен с возможностью вращения относительно стенки, на которой закреплена перегородка, образующая входную и выходную полости и несущая соприкасающиеся с цилиндрической стенкой клапаны, выполненные с возможностью попеременного совмещения отверстий в цилиндрической стенке вращающегося золотника с входной и выходной полостями.

На фиг. 1 и 2 показан предлагаемый гравитационный двигатель с объемными элементами в виде цилиндров, две проекции; на фиг.3 двигатель с объемными элементами в виде сильфонов.

Гравитационный двигатель (фиг.1 и 2) содержит установленный на горизонтальном валу 1 ротор, который состоит из груза в виде массивного обода 2 тороидальной формы, ступицы 3, объемных элементов в данном случае в виде цилиндров 4 с поршнями 5 и регулирующего устройства подачи рабочего тела, содержащего совмещенный со ступицей 3 золотник, внутренний объем которого при помощи неподвижной перегородки 6 разделен на водную 7 и выходную 8 полости, первая из которых сообщается с входным патрубком 9 для рабочего тела, а вторая с выходным патрубком 10. Цилиндры 4 установлены на ступице равномерно по окружности и радиально относительно оси О-О. Поршни 5 размещены в цилиндрах с возможностью свободного перемещения в радиальных направлениях и несут закрепленные с внешней стороны штоки 11, на которых как на торцовых частях объемных элементов с возможностью свободного вращения на осях размещены ролики 12, опирающиеся на внутреннюю кольцевую опорную направляющую поверхность обода 2 с возможностью возвратно-поступательного перемещения по дуге обода при вращении ротора. В дне цилиндров 4 и в цилиндрической стенке 13 золотника выполнены совмещенные друг с другом проточные отверстия 14, соединяющие полости цилиндров 4 с полостью золотника. Совмещенный со ступицей 3 и являющийся его составной частью золотник установлен на валу 1 двигателя, который прикреплен к торцовой стенке 3 золотника, жестко соединенный с цилиндрической его стенкой 13. Противоположная торцовая сторона полости золотника закрыта неподвижной торцовой стенкой 15 с возможностью вращения золотника относительно этой стенки, на которой закреплена неподвижная перегородка 6, образующая указанные выше входную 7 и выходную 8 полости золотника. Зазор между неподвижной торцовой стенкой 15 и цилиндрической стенкой 13 золотника имеет уплотнение в виде сальника. Неподвижная торцовая стенка 15 имеет два отверстия, одно из которых совмещено с входным 9, а другое с выходным 10 патрубками, прикрепленными к этой стенке и сообщающимися соответственно с входной 7 и выходной 8 полостями золотника. На сторонах перегородки 6 золотника, соприкасающихся с цилиндрической стенкой 13 золотника, установлены клапаны 16, которые обеспечивают попеременное перекрытие отверстий 14 в дне цилиндров при вращении золотника и попеременное совмещение отверстий в цилиндрической стенке золотника с входной и выходной полостями. Каждая из двух полостей золотника сообщается соответственно или с входным 9, или с выходным 10 патрубками. Золотник 3 с его входной 7 и выходной 8 полостями, цилиндрической стенкой 13 с отверстиями 14, перегородка 6 и клапаны 16 в совокупности составляют регулирующее устройство подачи рабочего тела от внешнего источника с избыточным давлением по сравнению с окружающей средой. Ротор двигателя установлен на опорах 17 и основании 18 эксцентрично относительно оси вращения О-О.

Частный случай выполнения гравитационного двигателя (фиг.3) отличается от приведенного выше только тем, что объемные элементы у него выполнены в виде эластичных емкостей, например сильфонов 19, на внешних относительно оси оконечностях которых установлены ролики 12, которые могут устанавливаться в паре и опираться на внешнюю и внутреннюю поверхности обода.

Гравитационный двигатель работает следующим образом.

Рабочее тело в виде газа или жидкости, имеющее избыточное давление по сравнению с окружающей средой, подается по входному патрубку 9 в сообщающуюся с этим патрубком входную полость 7 золотника и через отверстия 14 поступает в полости тех цилиндров 4, отверстия которых сообщаются при данном положении с входной полостью 7 золотника. Под действием рабочего тела поршни 5 в цилиндрах 4 перемещаются в радиальном направлении от оси О-О ротора и через штоки 11 и ролики 12 увлекают в том же направлении массивный обод 2. Ротор при этом приводится в неравновесное положение, поскольку большая часть массы обода расположится по одну сторону от вертикали Б-Б, проходящей через ось О-О ротора. Вес Р1 меньшей части обода ротора по другую сторону от вертикали Б-Б при меньшем плече R1 его действия относительно оси О-О ротора создаст вращающий момент R1P1, величина которого меньше вращающего момента R2P2 большей части обода, перемещенного поршнями 5 в сторону от оси О-О. В совокупности на обод 2 будет воздействовать вращающий момент, равный разности этих двух вращающих моментов R2P2-R1P1. Под действием этого совокупного вращающего момента обод и ротор в целом приводятся во вращение (в данном случае на фиг.1 против часовой стрелки). В связи с неподвижностью перегородки 6 и установленных на ней клапанов 16 вращающиеся вместе с золотником цилиндры 4 через свои отверстия 14 попеременно сообщаются с входной 7 или выходной 8 полостями золотника, связанными соответственно с входным 9 или выходным 10 патрубками. За счет этого обеспечивается заполнение рабочим телом тех цилиндров, которые располагаются при вращении ротора с одной стороны от оси О-О, и освобождение их от рабочего тела при перемещении на другую сторону от оси. При этом поддерживается постоянная односторонняя неуравновешенность обода и обеспечивается его вращение под действием силы тяжести. При вращении ротора длина дуги обода между соседними роликами 12 циклически изменяется в связи с разным удалением различных участков обода от оси О-О вращения, обусловленного его эксцентрическим положением относительно этой оси. В связи с этим ролики совершают колебательные относительно среднего положения перемещения по ободу, перекатываясь по его внутренней кольцевой опорной направляющей поверхности.

Двигатель, снабженный сильфонами (фиг.3) или иными эластичными объемными элементами, работает так же, как и описанный выше. Парное расположение роликов 12 с опорой на внешнюю и внутреннюю кольцевые опорные направляющие поверхности обода 2 исключает возможность ударов роликов об обод при их отходе от поверхности обода, что может иметь место при запуске двигателя.

1. ГРАВИТАЦИОННЫЙ ДВИГАТЕЛЬ, содержащий размещенный на опорах с возможностью свободного вращения на горизонтальном валу ротор, на ступице которого равномерно по окружности установлены объемные элементы, выполненные с возможностью возвратно-поступательного перемещения в радиальных направлениях и соединенные с грузами, регулирующее устройство подачи рабочего тела в объемные элементы, отличающийся тем, что груз выполнен в виде обода тороидальной формы с внутренней кольцевой опорной направляющей поверхностью, опирающейся на торцевые части объемных элементов, связанных с регулирующим устройством подачи рабочего тела от внешнего источника с избыточным давлением по сравнению с окружающей средой, причем обод установлен эксцентрично относительно оси вращения ротора.

2. Двигатель по п. 1, отличающийся тем, что объемные элементы выполнены в виде цилиндров с поршнями, установленными радиально на ступице равномерно по окружности, при этом поршни выполнены с возможностью контактной связи с ободом.

3. Двигатель по п. 1, отличающийся тем, что объемные элементы выполнены в виде сильфонов, установленных радиально на ступице равномерно по окружности, при этом их внешние оконечности выполнены с возможностью контактной связи с ободом.

4. Двигатель по п. 1, отличающийся тем, что контактная связь каждого объемного элемента с внутренней кольцевой опорной направляющей поверхностью обода выполнена в виде ролика, соединенного с объемным элементом.

5. Двигатель по п. 1, отличающийся тем, что регулирующее устройство подачи рабочего тела выполнено в виде цилиндрического золотника с входной и выходной полостями, установленного с возможностью вращения вместе со ступицей, при этом входная и выходная полости сообщены соответственно с входным и выходным патрубками, в цилиндрической стенке золотника выполнены отверстия, сообщающиеся с полостями объемных элементов, одна из торцевых стенок золотника жестко соединена с его цилиндрической стенкой, другая неподвижно и жестко соединена с входным и выходным патрубками, а золотник выполнен с возможностью вращения относительно стенки, на которой закреплена перегородка, образующая входную и выходную полости и несущая соприкасающиеся с цилиндрической стенкой клапаны, выполненные с возможностью попеременного совмещения отверстий в цилиндрической стенке вращающегося золотника с входной и выходной полостями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector