3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики асинхронных двигателей при частотном регулировании

Электродвигатели частотно-регулируемые

Характеристики асинхронного частотно-регулируемого двигателея АДЧР

Электродвигатели асинхронные АДЧР применяются для работы с преобразователями частоты, используются в составе КОМПЛЕКТНЫХ ПИВОДОВ. Электродвигатели серии АДЧР асинхронные двигатели частотного регулирования выпускаются с учетом всех особенностей питания от частотного преобразователя и отвечают требованиям заказчика по конструкции, комплектации и режимам работы. К качеству изготовления всех элементов двигателя предъявляются повышенные требования.

В работе частотно-регулируемого привода существует ряд ограничений на использование электродвигателя, поэтому между электродвигателями АДЧР и общепромышленными двигателями есть существенные отличия.

Преимущества регулируемого электропривода:
  • увеличение ресурса оборудования
  • экономия электроэнергии до 50%
  • уменьшение нагрузок на механическую часть агрегата
  • снижение нагрузки на сеть
  • простая интеграция в системы автоматического управления
  • уменьшение пусковых токов
  • гибкость управления технологическим процессом

Отличия электродвигателей АДЧР от общепромышленных

Специальная обмотка статора.

Электродвигатель АДЧР имеет обмотку, предназначенную для работы с источником питания, выдающим прямоугольные импульсы напряжения(ШИМ). Частотно-регулируемые двигатели имеют специальную систему изоляции обмотки, стойкую к высокой скорости нарастания напряжения. Работа общепромышленного двигателя от преобразователя частоты сокращает срок службы двигателя т.к. общепромышленные моторы предназначены для питания от сети переменного тока синусоидальной формы фиксированной частоты. Специальная технология изготовления обмотки двигателей АДЧР и специальный обмоточный провод предотвращают систему изоляции от преждевременного разрушения и от короткого замыкания, а также выхода из строя электродвигателя.

Повышенные требования по вибрации для двигателей АДЧР.

Часто электродвигатели АДЧР работают на скоростях выше, чем аналогичные общепромышленные электродвигатели, поэтому к роторам таких двигателей предъявляются более строгие требования по уровню вибрации. Роторы электродвигателей серии АДЧР точно отбалансированы и имеют низкий уровень вибрации по сравнению с общепромышленными моторами, что положительно сказывается на сроке службы электродвигателя и связанного оборудования.

Надежный подшипниковый узел двигателей АДЧР.

Электродвигатели АДЧР комплектуются подшипниками производства SKF, которые гарантируют высокое качество и длительный срок эксплуатации, что снижает затраты на обслуживание двигателей.

Дополнительное оборудование и независимая вентиляция.

Двигатель АДЧР работает в диапазоне частот вращения с необходимым уровнем нагрузки, в то время как общепромышленные двигатели предназначен для работы на одной фиксированной скорости вращения. Работа стандартных электродвигателей на скоростях ниже номинальной вызывает перегрев и выход их строя, а работа на повышенных скоростях приводит к потере мощности и увеличению шума. Электродвигатели АДЧР (АДЧР-В, -ДВ, -ТДВ) с установленным узлом независимой вентиляции лишены этих недостатков и могут работать в режиме постоянного момента на валу от самой минимальной до максимальной скорости.

По требованию заказчика частотно-регулируемые электродвигатели АДЧР могут быть оснащены:

  • электромагнитным тормозом — для торможения и удержания вала электродвигателя после остановки или в аварийной ситуации, что актуально, в первую очередь, для системы кранового привода (АДЧР-Т, -ТВ, -ТДВ);
  • датчиком обратной связи — для регулирования и позиционирования в точных системах с векторным управлением с глубиной до 1:10000 (АДЧР-ДВ, -ТДВ).

СпецЭлектро предлагает доступные цены на АДЧР

Целесообразно использоватьЧАСТОТНЫЕ ПРЕОБРАЗОВАТЕЛИ не в качестве элементов системы управления конкретного агрегата, а как составляющую комплексных системных решений с подключением широкого набора средств автоматизации технологических процессов. Такие решения позволяют получить эффект, который заведомо больше простой экономии электрической энергии.

Установка независимой вентиляции на двигателе АДЧР дает возможность увеличения диапазона по минимальной и максимальной скорости предохраняя от перегрева на разных скоростях.

Электромагнитный тормоза устанавливаемый на АДЧР выполняет задачи по удержанию нагрузки при отключенном силовом питании двигателя, а так же обеспечивает безопасность оборудования, на которое устанавливается асинхронный электродвигатель.

Датчик скорости/положения энкодер установленный на асинхронных двигателях АДЧР, предназначен для обеспечения работы в системах точного регулирования и позиционирования, требующих реального контроля скорости, а так же в системах требующих управление моментом вращения механизма.

Частотное регулирование скорости асинхронных электроприводов

Принципиальная возможность регулирования угловой скорости асинхронного двигателя изменением частоты питающего напряжения следует непосредственно из выражения:

.

Питание асинхронных двигателей осуществляется при этом не от общей сети, а от преобразователя частоты ПЧ, показанного на рис. 6.5, энергия к которому подводится от сети постоянной частоты f и напряжения U. На выходе преобразователя, как правило, меняется не только частота f1, но и напряжение U1. Для преобразования частоты могут быть использованы электромашинные или полупроводниковые устройства, различающиеся по принципу действия и конструкции.

Рисунок 6.5 – Схема включения асинхронных двигателей, получающих питание от преобразователя частоты

При регулировании частоты возникает также необходимость регулирования напряжения источника питания. Действительно, э. д. с. обмотки статора асинхронного двигателя пропорциональна частоте и потоку:

С другой стороны, пренебрегая в первом приближении падением напряжения на сопротивлениях обмотки статора, т. е. полагая , можно записать:

Читать еще:  Что такое двигатель cummins в маз зубренок

Или

Из приведенного выражения следует, что при неизменном напряжении источника питания и регулировании его частоты изменяется магнитный поток асинхронного двигателя. В частности, уменьшение частоты приводит к возрастанию потока и как следствие к насыщению машины и увеличению тока намагничивания, что связано с ухудшением энергетических показателей двигателя, а в ряде случаев и с его недопустимым нагревом. Увеличение частоты приводит к снижению потока двигателя, что при постоянном моменте нагрузки на валу в соответствии, с выражением приводит к возрастанию тока ротора, т. е. к перегрузке его обмоток по току при недоиспользованной стали. Кроме того, с этим связано снижение максимального момента и перегрузочной способности двигателя. Для наилучшего использования асинхронного двигателя при регулировании скорости изменением частоты необходимо регулировать напряжение одновременно в функции частоты и нагрузки.

Регулирование напряжения лишь в функции одной частоты с учетом характеристики механизма может быть реализовано в разомкнутых системах частотного управления.

Регулирование напряжения в функции нагрузки можно осуществить, как правило, лишь в замкнутых системах, в которых при использовании обратных связей напряжение при данной частоте может изменяться в зависимости от нагрузки.

По мере снижения частоты при падает доля э. д. с. по отношению к приложенному напряжению вследствие относительного возрастания падения напряжения в сопротивлении статора с ростом нагрузки, что приводит к уменьшению магнитного потока, а, следовательно, к снижению электромагнитного момента. Как следствие убывания магнитного потока и абсолютного критического скольжения по мере снижения частоты падает максимальный момент и снижается жесткость механических характеристик (см. рис. 6.6).

Рисунок 6.6 – Механические характеристики асинхронного двигателя при частотном управлении по закону .

Изменение частоты источника питания позволяет регулировать скорость асинхронного двигателя как выше, так и ниже основной. Обычно при регулировании выше основной скорости частота источника питания превышает номинальную не более чем в 1,5 2 раза. Указанное ограничение обусловлено, прежде всего, прочностью крепления обмотки ротора. Кроме того, с ростом частоты питания заметно увеличиваются величины мощности потерь, связанные с потерями в стали статора. Регулирование скорости вниз от основной, как правило, осуществляется в диапазоне до 10 15. Нижний предел частоты ограничен сложностью реализации источника питания с низкой частотой, возможностью неравномерности вращения и рядом других факторов. Таким образом, частотное регулирование скорости асинхронного двигателя может осуществляться в диапазоне до 20–30. Использование двигателей специальной конструкции дает возможность расширить диапазон регулирования за счет увеличения верхнего предела скорости. Нижний предел скорости может быть уменьшен путем введения в схему управления различных обратных связей.

Если при регулировании частоты напряжение изменяется таким образом, что Ф=const, то допустимый момент на валу асинхронного двигателя при частотном регулировании скорости также будет неизменным ( ).

Этот способ регулирования позволяет получить жесткие механические характеристики. Потери мощности при частотном управлении невелики. Это следует из выражения

с учетом того, что двигатель при изменении частоты работает на линейных участках механических характеристик, т. е. при малых скольжениях s. При наличии соответствующего преобразователя частоты можно получить любую плавность регулирования. Важно отметить, что указанные положительные свойства можно реализовать с бесконтактным асинхронным короткозамкнутым двигателем, который является наиболее простым, надежным и дешевым электрическим двигателем.

Частотное регулирование угловой скорости электроприводов переменного тока с двигателями с короткозамкнутым ротором находит все большее применение в различных отраслях техники. Например, в установках текстильной промышленности, где с помощью одного преобразователя частоты, питающего группу асинхронных двигателей, находящихся в одинаковых условиях, плавно и одновременно регулируются их угловые скорости. Примером другой установки с частотно-регулируемыми асинхронными двигателями с короткозамкнутым ротором могут служить транспортные рольганги в металлургической промышленности, некоторые конвейеры и др.

Частотное регулирование угловой скорости асинхронных двигателей широко применяется в индивидуальных установках, когда требуется получение весьма высоких угловых скоростей (например, для центрифуг, шлифовальных станков, для привода электрошпинделей в металлорежущих станках с частотой вращения до 20 000 об/мин).

Экономические выгоды частотного регулирования особенно существенны для приводов, работающих в повторно-кратковременном режиме, где имеет место частое изменение направления вращения с интенсивным торможением.

Основным недостатком электроприводов с частотным управлением является необходимость использования преобразователей частоты, которые в настоящее время характеризуются относительной сложностью по схемному исполнению и высокой стоимостью. Этот недостаток ограничивает применение частотноуправляемых электроприводов. Тем не менее, преимущества этих приводов столь значительны, что на протяжении многих лет и в настоящее время ведутся интенсивные работы по созданию преобразователей частоты для регулирования скорости асинхронных двигателей.

Читать еще:  Что такое двигатель gdi хундай

В случае создания приемлемых по сложности и стоимости преобразователей частоты частотноуправляемый привод с асинхронным короткозамкнутым двигателем получит широкое распространение в технике.

Контрольная работа: Расчет электромеханических характеристик частотно-регулируемого асинхронного двигателя

Уральский Государственный Технический Университет

Кафедра электрических машин

Контрольная работа

Расчет электромеханических характеристик частотно-регулируемого асинхронного двигателя

Выполнил: Студент гр.

Проверил: Старший преподаватель

Расчет электромеханических характеристик частотно-регулируемого асинхронного двигателя

Частотное регулирование асинхронного двигателя применяется в тех случаях, когда требуется плавно и в широких пределах регулировать частоту вращения и электромагнитный момент двигателя. При этом, как правило, требуется обеспечить благоприятные условия работы двигателя по магнитному потоку и току, не допуская снижения его перегрузочной способности.

Простейший анализ рабочих режимов асинхронного двигателя при частотном регулировании можно выполнить с помощью его схемы замещения (рис.1).

Рис. 1. Схема замещения асинхронного двигателя.

Существует несколько подходов к формированию третьего условия, вытекающих из стремления обеспечить экономичный режим работы двигателя. Наиболее часто используется одно из следующих условий:

1.

2.

3.

4.

Эти условия получили название законов управления. Выбор рационального закона управления для конкретного типа электропривода осуществляется на основе анализа электромеханических характеристик двигателя. В табл.1 приведены формулы для расчета тока ротора для каждого из рассматриваемых законов

Исходные данные для расчета.

Параметры базового двигателя

; ; ; ;

Отклонения параметров i-варианта от параметров базового приведены в табл. 1.

Параметры конкретного двигателя определяются по соотношениям:

Задание 1. Рассчитать механические характеристики двигателя для четырех законов управления. Расчеты выполнить для следующих значений частот питающего напряжения , варьируя скольжение от 0 до 1.0 . Результаты расчетов свести в таблицы.

По результатам расчетов для каждого закона управления построить на отдельном графике семейство механических характеристик при частотах . Из полученных характеристик для каждой частоты определить скольжение , соответствующее номинальному моменту

Закон№1 Согласно данным соотношениям, рабочий процесс двигателя определяются тремя переменными: частотой питающего напряжения ; модулем питающего напряжения и частотой скольжения ротора . Выбор этих переменных осуществляется исходя из требований получения заданной частоты вращения ротора

Схема замещения позволяет, используя методы теории электрических цепей, рассчитать следующие величины:

Модуль напряжения статора при первом законе управления изменяется пропорционально частоте:

(1)

.

Закон управления ______1______. Частота ____1.5____

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Регулирование скорости асинхронного двигателя

Более всераспространены последующие методы регулирования скорости асинхронного мотора : изменение дополнительного сопротивления цепи ротора, изменение напряжения, подводимого к обмотке статора, мотора изменение частоты питающего напряжения, также переключение числа пар полюсов.

Регулирование частоты вращения асинхронного мотора методом введения резисторов в цепь ротора

Введение резисторов в цепь ротора приводит к повышению утрат мощности и понижению частоты вращения ротора мотора за счет роста скольжения, так как n = n о (1 — s).

Из рис. 1 следует, что при увеличении сопротивления в цепи ротора при том же моменте частота вращения вала мотора миниатюризируется.

Твердость механических черт существенно понижается с уменьшением частоты вращения, что ограничивает спектр регулирования до (2 — 3) : 1. Недочетом этого метода являются значимые энергопотери, которые пропорциональны скольжению. Такое регулирование может быть только для мотора с фазным ротором.

Регулирование частоты вращения асинхронного мотора конфигурацией напряжения на статоре

Изменение напряжения, подводимого к обмотке статора асинхронного мотора , позволяет регулировать скорость при помощи относительно обычных технических средств и схем управления. Для этого меж сетью переменного тока со стандартным напряжением U 1ном и статором электродвигателя врубается регулятор напряжения .

При регулировании частоты вращения асинхронного мотора конфигурацией напряжения, подводимого к обмотке статора, критичный момент М кр асинхронного мотора меняется пропорционально квадрату подводимого к движку напряжения U рет (рис. 3 ), а скольжение от U рег не зависит.

Рис. 1. Механические свойства асинхронного мотора с фазным ротором при разных сопротивлениях резисторов, включенных в цепь ротора

Рис. 2. Схема регулирования скорости асинхронного мотора методом конфигурации напряжения на статоре

Рис. 3. Механические свойства асинхронного мотора при изменении напряжения подводимого к обмоткам статора

Если момент сопротивления рабочей машины больше пускового момента электродвигателя (Мс > Мпуск), то движок не будет крутиться, потому нужно запустить его при номинальном напряжении 17ном либо на холостом ходу.

Читать еще:  Как установить двигатель на ниссан блюберд

Регулировать частоту вращения короткозамкнутых асинхронных движков таким методом можно только при вентиляторном нраве нагрузки. Не считая того, должны употребляться особые электродвигатели с завышенным скольжением. Спектр регулирования маленький, до n кр.

Для конфигурации напряжения используют трехфазные автотрансформаторы и тиристорные регуляторы напряжения.

Рис. 4. Схема замкнутой системы регулирования скорости тиристорный регулятор напряжения — асинхронный движок (ТРН — АД)

Замкнутая схема управления асинхронным движком , выполненным по схеме тиристорный регулятор напряжения — электродвигатель позволяет регулировать скорость асинхронного мотора с завышенным скольжением (такие движки используются в вентиляционных установках).

Регулирование частоты вращения асинхронного мотора конфигурацией частоты питающего напряжения

Потому что частота вращения магнитного поля статора n о = 60 f /р, то регулирование частоты вращения асинхронного мотора можно создавать конфигурацией частоты питающего напряжения.

Принцип частотного способа регулирования скорости асинхронного мотора состоит в том, что, изменяя частоту питающего напряжения, можно в согласовании с выражением при постоянном числе пар полюсов р изменять угловую скорость n о магнитного поля статора.

Этот метод обеспечивает плавное регулирование скорости в широком спектре, а механические свойства владеют высочайшей жесткостью.

Для получения больших энергетических характеристик асинхронных движков (коэффициентов мощности, полезного деяния, перегрузочной возможности) нужно сразу с частотой изменять и подводимое напряжение. Закон конфигурации напряжения находится в зависимости от нрава момента нагрузки Мс. При неизменном моменте нагрузки напряжение на статоре должно регулироваться пропорционально частоте.

Схема частотного электропривода приведена на рис. 5, а механические свойства АД при частотном регулировании — на рис. 6.

Рис. 5. Схема частотного электропривода

Рис. 6. Механические свойства асинхронного мотора при частотном регулировании

С уменьшением частоты f критичный момент несколько миниатюризируется в области малых частот вращения. Это разъясняется возрастанием воздействия активного сопротивления обмотки статора при одновременном понижении частоты и напряжения.

Частотное регулирование скорости асинхронного мотора позволяет изменять частоту вращения в спектре (20 — 30) : 1. Частотный метод является более многообещающим для регулирования асинхронного мотора с короткозамкнутым ротором. Утраты мощности при таком регулировании невелики, так как малы утраты скольжения.

Большая часть современных преобразователей частоты выстроено по схеме двойного преобразования. Они состоят из последующих главных частей: звена неизменного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено неизменного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение неизменного тока.

Силовой трехфазный импульсный инвертор содержит 6 транзисторных ключей. Любая обмотка электродвигателя подключается через соответственный ключ к положительному и отрицательному выводам выпрямителя. Инвертор производит преобразование выпрямленного напряжения в трехфазное переменное напряжение подходящей частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей употребляются силовые IGBT-транзисторы. По сопоставлению с тиристорами они имеют более высшую частоту переключения, что позволяет производить выходной сигнал синусоидальной формы с наименьшими искажениями. Регулирование выходной частоты I вых и выходного напряжения осуществляется за счет частотной широтно-импульсной модуляции.

Регулирование частоты вращения асинхронного мотора переключение числа пар полюсов

Ступенчатое регулирование скорости можно выполнить, используя особые многоскоростные асинхронные движки с короткозамкнутым ротором.

Из выражения n о = 60 f /р следует, что при изменении числа пар полюсов р получаются механические свойства с разной частотой вращения n о магнитного поля статора. Потому что значение р определяется целыми числами, то переход от одной свойства к другой в процессе регулирования носит ступенчатый нрав.

Существует два метода конфигурации числа пар полюсов. В первом случае в пазы статора укладывают две обмотки с различным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во 2-м случае обмотку каждой фазы составляют из 2-ух частей, которые соединяют параллельно либо поочередно. При всем этом число пар полюсов меняется вдвое.

Рис. 7. Схемы переключения обмоток асинхронного мотора: а — с одинарной звезды на двойную; б — с треугольника на двойную звезду

Регулирование скорости методом конфигурации числа пар полюсов экономно, а механические свойства сохраняют твердость. Недочетом этого метода является ступенчатый нрав конфигурации частоты вращения асинхронного мотора с короткозамкнутым ротором. Выпускаются двухскоростные движки с числом полюсов 4/2, 8/4, 12/6. Четырехскоростной электродвигатель с полюсами 12/8/6/4 имеет две переключаемые обмотки.

Применены материалы книжки Дайнеко В.А., Ковалинский А.И. Электрическое оборудование сельскохозяйственных компаний.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector