0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики дизельного двигателя с непосредственным впрыском

Преимущества и недостатки прямого впрыска двигателя

Ещё в начале 2000-х годов в Украину начали попадать первые автомобили Mitsubishi с обозначениями GDI около индексов, указывающих на объём двигателя.

Под этой аббревиатурой скрывается непосредственный впрыск топлива в цилиндры двигателя — именно эта японская компания стала первой, начавшей серийное производство силовых агрегатов с такой системой впуска. Такой мотор заслужил очень неоднозначные отзывы, поэтому перед покупкой автомобилей Mitsubishi следует внимательно рассмотреть плюсы и минусы двигателя GDI.

Это будет полезным и покупателям машин других производителей, поскольку такие двигатели устанавливаются на автомобили Volkswagen, GM, Toyota, Mercedes и других марок.

Теоретическая часть

Обычный инжекторный двигатель, который использует коллекторную систему смесеобразования, предполагает подачу в цилиндры уже готового бензовоздушного состава. Такое смешивание воздуха и горючего происходит во впускном коллекторе, где устанавливаются форсунки, управляемые электроникой. Если же говорить про двигатель GDI, то в нём форсунка направлена непосредственно в камеру сгорания. Соответственно, через впускные клапаны подаётся только воздух, а процесс смесеобразования происходит непосредственно в цилиндрах.

Камера сгорания двигателя GDI

Естественно, добиться однородного состава топливовоздушной смеси в таких условиях очень сложно, поэтому двигатель GDI управляется сложным электронным блоком, в котором используется программное обеспечение, рассчитанное на несколько различных циклов работы. Кроме того, для достижения идеальных параметров смесеобразования необходимо использовать специальные вихревые форсунки, которые подают топливо внутрь в виде мелкодисперсионного тумана.

Стоит сказать, что основные плюсы двигатель GDI получает в результате работы на сверхобеднённой смеси, в которой содержание бензина по сравнению с воздухом уменьшено до 1:20, тогда как при распределённом впрыске соотношение поддерживается на постоянном уровне 1:14. Однако даже мотор с непосредственным впрыском не может работать постоянно в таком режиме, поэтому под нагрузками в его системе впуска восстанавливается нормальное смесеобразование.

За счёт этого двигатель GDI должен оснащаться двухступенчатой системой подачи топлива. Именно со всеми этими отличиями и связаны основные минусы конструкции — посмотрим, смогут ли их превзойти плюсы, полученные от перехода на непосредственный впрыск.

Положительные стороны

Как уже говорилось выше, главные плюсы двигатель GDI получает благодаря возможности работы на сильно обеднённой смеси при отсутствии больших нагрузок. Преимуществом уменьшения соотношения с 1:14 до 1:20 является существенное снижение расхода топлива при движении в смешанном или городском цикле. Исследования специалистов показывают, что в городском заторе с длительной работой двигателя на постоянных оборотах холостого хода затраты горючего уменьшаются сразу на 20–25%. Однако говорить о таких же результатах при быстрой езде по трассе не приходится — двигатель GDI будет требовать столько же топлива, сколько и силовой агрегат с распределённым впрыском.

Двигатель KIA с системой GDI

Дополнительные плюсы удаётся получить и от смесеобразования, происходящего непосредственно в камере сгорания. Специалисты по двигателям автомобилей могут сказать, что горение в цилиндре происходит неравномерно — больше всего топлива удаётся поджечь в непосредственной близости к свече, тогда как дальние части камеры охватываются неравномерно, что и приводит к выбросу остатков горючего в выхлопную трубу. Компания Volkswagen впервые предложила технологию послойного прямого впрыска топлива, назвав её FSI — впоследствии другие автомобильные фирмы приняли на вооружение такую методику.

За один обычный такт впуска форсунка может впрыскивать до пяти порций топлива, которые образуют неравномерную смесь, составленную с учётом всех нюансов процесса горения. Благодаря этому двигатели FSI и современные агрегаты GDI имеют меньший расход топлива, меньшую токсичность выхлопа, а также лучшую стабильность работы на невысоких оборотах.

Двигатель V6 FSI Audi

Такое изменение смесеобразования позволяет получить и другой положительный эффект, сущность которого заключается в повышении мощности и тяги приблизительно на 10–15%. Кроме того, двигатель GDI позволяет получить плюсы, связанные с уменьшением объёма нагара. Соответственно, увеличивается срок службы многих компонентов, а масло сохраняет большую часть своих свойств вплоть до момента замены. Плюсы заключаются и в снижении вероятности поломки мотора в результате закупорки масляных каналов продуктами сгорания топлива. Однако ни одна сложная конструкция не может обойтись без своих минусов — включая и мотор с непосредственным впрыском.

Главные недостатки

Минусы двигателей с прямым впрыском связаны с использованием более сложной системы впуска, в состав которой входит и топливный насос высокого давления, похожий на аналогичную конструкцию в дизельном силовом агрегате. Применение таких агрегатов приводит к тому, что двигатель GDI становится чувствительным к качеству топлива. Это касается не только содержания твёрдых частиц, но также наличия в горючем соединений серы, железа, фосфора и многих других минералов. Минусы проявляются в частых поломках мотора при заправке некачественным топливом.

Схема системы питания двигателя GDI

Кроме того, проблемы двигателей с непосредственным впрыском связаны и с тем, что в них применяются очень специфические технологические решения, которые пока знакомы лишь немногим специалистам сервисных центров. За счёт этого отремонтировать двигатель GDI не так просто, как обычный агрегат с распределённым впрыском. Минусы этих двигателей могут быть связаны и с упомянутой в теоретической части двухступенчатой системой подачи топлива. Практически у каждого производителя есть свои специфические поломки:

  • Моторы Toyota и Lexus с непосредственным впрыском страдают от поломки клапанов двухступенчатого насоса, приводимого распредвалом. В результате бензин поступает в картер двигателя, что приводит к его непоправимым поломкам в течение 1–2 дней;
  • Двигатели Mitsubishi оснащаются двумя различными насосами — низкого и высокого давления. Второй узел достаточно часто забивается твёрдыми частицами, содержащимися в некачественном топливе. В результате мотор может отлично работать на холостых и низких оборотах, но глохнуть при нажатии на педаль газа;
  • В двигателях Cadillac применяются пьезофорсунки с особым напылением. При длительной работе на топливе с высоким содержанием серы они разрушаются, что приводит к необходимости ремонта стоимостью в 1500–2000 долларов.

Пьезофорсунка двигателя GDI

Минусы могут заключаться и в малой распространённости запчастей к таким двигателям — очень часто их приходится ожидать в течение 2–3 недель, что приводит к длительным простоям автомобиля. Поэтому, приобретая машину с прямым впрыском топлива, стоит серьёзно задуматься о вопросах её ремонта, а также о необходимости заправки качественным топливом на фирменных АЗС.

Стоит ли покупать?

Конечно, двигатели с непосредственным впрыском имеют более высокую мощность и тягу, а также способны обеспечивать экономию топлива. Однако у них есть существенные минусы, которые связаны с надёжностью и требованиями к качеству топлива. Поэтому их эксплуатация в украинских условиях может приводить к частым дорогостоящим ремонтам. Но в последнее время в продаже появились автомобили, которые прошли специальную адаптацию.

Они могут заправляться обычным бензином, продающимся на наших заправках, не создавая угрозу больших материальных затрат. Их преимущества не столь значительны, но даже адаптированные моторы с непосредственным впрыском позволяют экономить немало топлива, получая при этом лучшие динамические параметры.

Характеристика давления впрыска

С точки зрения идеального процесса распыливания желательно, чтобы давление перед распылителем в процессе всего впрыска оставалось постоянным или имело максимум в начале впрыска, когда в цилиндр вводятся первые порции топлива, обеспечивающие самовоспламенение. Однако в реальных процессах давление, при котором топливо впрыскивается в цилиндр через форсунку, не является постоянным, и характер его изменения, как правило, далек от идеала.

Характер изменения давления перед распылителем в значительной степени зависит от типа топливной системы, режима работы двигателя, состояния элементов топливной аппаратуры и ряда других факторов. На рисунке 5.17 представлены зависимости изменения давления перед распылителем по углу поворота, называемые характеристиками давления впрыска для трех основных типов топливных систем, используемых в современных СДВС.

Наиболее стабильное давление в течение всего впрыска обеспечивает аккумуляторная система малооборотного дизеля серии RT-flex фирмы Wärtsilä. Наличие большого объема аккумулирующего пространства позволяет на протяжении всего впрыска поддерживать давление на постоянном, достаточно высоком уровне в независимости от режима работы двигателя.

Читать еще:  Двигатель 2 jay z характеристики

Стабильный впрыск обеспечивает система подачи топлива с гидравлическим электроуправляемым приводом ТНВД, используемая на двигателях серии ME фирмы MAN. Наличие гидравлического привода позволяет получить закон подачи топлива в камеру сгорания, практически независящий от частоты вращения двигателя.

У дизелей серии MC этой же фирмы, оборудованных системой впрыска с механическим приводом, при снижении частоты вращения отмечается снижение давления впрыска, пропорциональное уменьшению скорости плунжера.

Параметры топливоподачи, определяющие характер протекания процесса впрыска, делят на статические (геометрические) и динамические.

Статические параметры характеризуют процесс топливоподачи насосом высокого давления, динамические — форсункой. Эти параметры характеризуют топливоподачу с качественной стороны, они показывают, как располагаются фазы впрыска топлива относительно ВМТ поршня и определяют начало, конец и продолжительность подачи топлива насосом (φнпн, φкпн, φн) и форсункой (φнпф, φкпф, φф). Эти данные являются основой для анализа процессов сгорания, экономических и динамических показателей рабочего процесса двигателя.

Взаимное влияние статических и динамических фаз топливоподачи показано на рисунке 5.18. На нем видно, что динамические фазы сдвинуты по отношению к статическим в сторону вращения коленчатого вала. Основная причина такого смещения фаз — упругость топлива, заполняющего линию высокого давления.

Схематично представленные на рисунке 5.18 кривые изменения давлений в полости топливного насоса (Pн) и перед распылителем форсунки (Pф) характерны для систем непосредственного действия с нагнетательным клапаном, установленным в насосе. Кроме кривых давления на диаграмме представлены график подъема иглы форсунки и круговая диаграмма процесса топливоподачи.

До начала подачи рабочая полость насоса заполняется топливом под давлением Pнпн, создаваемым подкачивающим насосом. После перекрытия верхней кромкой плунжера наполнительного отверстия наблюдается резкое увеличение давления Pн, что свидетельствует о начале активного хода плунжера (φнпн). Угловой промежуток между началом подачи топлива насосом и ВМТ двигателя определяет угол опережения подачи по насосу (φопн).

Установленный в ТНВД нагнетательный клапан открывается, когда давление Pн возрастает до остаточного давления Pост, поддерживаемого в линии нагнетания между впрысками. До этого момента система нагнетания перекрыта с одной стороны иглой форсунки, с другой — нагнетательным клапаном насоса.

После открытия нагнетательного клапана рост давления будет происходить по всей линии нагнетания. Волна давления, создаваемая плунжером, движется к форсунке и, достигая ее, приводит к увеличению давления перед форсункой Pф. При достижении Pф давления начала подачи форсунки Pнпф, величина которого определяется предварительным затягом пружины игольчатого клапана, игла поднимается, пропуская топливо в сопловый наконечник.

Момент появления струи топлива из сопловых отверстий распылителя форсунки, отнесенный к положению коленчатого вала двигателя, называется углом начала впрыска. Начало впрыска, отнесенное к положению поршня в ВМТ, называется углом опережения подачи топлива (φоп). Если впрыск осуществляется до прихода поршня в ВМТ, угол опережения имеет положительное значение, если после — отрицательное.

Запаздывание начала подачи форсунки относительно начала подачи насоса определяется в основном временем, необходимым на увеличение давления топлива в системе нагнетания от давления подкачки (Pпод = Pнпн) до давления начала подачи форсунки (Pнпф). Поэтому чем больше объем системы, меньше остаточное давление Pост и сильнее затяг пружины, тем больше угол запаздывания подачи форсункой φзп. Угловой промежуток между началом подачи форсункой и ВМТ двигателя называется динамическим углом опережения подачи по форсунке (φуоп).

Как видно из рисунка 5.18, в момент открытия форсунки на кривой Pф отмечается характерный провал, связанный с тем, что при поднятии иглы происходит увеличение объема подыголочного пространства. После постановки иглы на упор увеличение подыголочного пространства прекращается и Pост давления продолжается. Характерный провал присутствует и на диаграммах, приведенных на рисунке 5.17.

Совпадение отсечной кромки с разгрузочным отверстием (или открытие отсечного клапана) сопровождается резким падением давления Pн. Нагнетательный клапан садится, и топливо под действием перепада давлений быстро перепускается в полость низкого давления. Этот момент соответствует концу подачи насоса (φкпн). Угловой промежуток между началом и концом подачи называется продолжительностью подачи насоса φппн.

Через некоторое время волна падения давления Pн от насоса доходит до форсунки и дальнейший впрыск происходит только за счет расширения топлива, отчего давление Pф падает. Когда оно упадет до уровня давления Pкпф, игла распылителя садится на седло (φкпф). Угловой промежуток между началом и концом подачи топлива форсункой называется продолжительностью подачи форсунки φппф.

Из рисунка 5.18 видно, что давление Pф к концу подачи топлива форсункой меньше, чем в момент начала подачи. Это явление называется дифференциальным эффектом иглы. Объясняется оно тем, что в момент открытия форсунки давление в полости распылителя действует только на часть торцевой поверхности игольчатого клапана, не прижатую к седлу, создавая меньшую силу, чем когда игла открыта и давление действует на всю ее торцевую поверхность.

При регулировании ТНВД по началу подачи с уменьшением нагрузки двигателя фаза подачи насосом все больше сдвигается на участок снижения скорости плунжера. Это приводит к нарушению баланса между подачами насоса и форсунки. При снижении оборотов на малых ходах подача насоса становится настолько вялой, что игла форсунки садится на место раньше, чем закончится активный ход плунжера. Именно по этой причине такой способ регулирования в чистом виде на судовых дизелях практически не применяется.

При регулировании ТНВД по концу подачи, в момент отсечки, давление резко падает и через еще поднятый нагнетательный клапан, расположенный в насосе, формируется обратный поток топлива. Закрытие клапана сопровождается гидравлическим ударом, от которого возникают волны давления, идущие к форсунке. За счет энергии этих волн игла форсунки может продолжать стоять на упоре, затягивая впрыск тем дольше, чем больше цикловая подача. В случае, когда к моменту прихода волны игольчатый клапан уже закрылся, волна может открыть его повторно. Если давление во фронте волны превысит давление открытия форсунки, произойдет подвпрыск.

Из рисунка 5.18 видно, что по мере подъема плунжера давление перед распылителем сначала возрастает от давления начала подачи форсункой Pнпф до некоторого максимума Pmaxф , а затем падает до давления конца подачи форсункой Pкпф.

Учитывая переменный характер давления в системе, под термином давление впрыска принято подразумевать максимальное давление перед распылителем: Pвпр = Pmaxф . Именно уровень Pmaxф определяет гидравлические нагрузки на элементы линий высокого давления и места их соединений, т. е. в конечном счете надежность работы топливной аппаратуры.

На протяжении последних лет наблюдается устойчивая тенденция повышения давления впрыска с целью сокращения периода впрыскивания и улучшения качества распыливания топлива, что в конечном счете обеспечивает повышение экономичности дизелей. У современных судовых дизелей давление впрыска лежит в пределах 60. 200 МПа, а в некоторых случаях может доходить до 250 МПа.

Продолжительность впрыска определяется моментами подъема и посадки иглы форсунки (линия h, рис 5.18). У судовых дизелей она составляет φф = 20. 40° ПКВ.

Как было показано выше (формула (5.12)), характер изменения давления впрыска зависит от конструктивных и эксплуатационных параметров элементов системы топливоподачи, от режима их работы и физических свойств топлива.

К конструктивным параметрам в первую очередь относится скорость подъема плунжера c = dhп/dφ, которая для систем с гидравлическим приводом зависит от скорости поступления управляющего масла в полость гидравлического цилиндра, а для систем с механическим приводом — от профиля кулачковой шайбы топливного насоса.

При механическом приводе ТНВД выбор профиля топливного кулачка осуществляется на основе расчетов основных геометрических размеров топливной аппаратуры и кинематической характеристики плунжера топливного насоса (средней скорости плунжера cm на участке геометрического полезного хода плунжера).

К числу основных относятся параметры, обеспечивающие заданные характеристики впрыска топлива по продолжительности подачи: геометрические размеры рабочего профиля топливного кулачка, угол подъема и величина полного подъема профиля.

Читать еще:  Чем заменить двигатель на форд орион

В судовых дизелях наиболее часто используются профили топливных кулачков, определяющие трапецеидальный и треугольный или близкие к ним законы изменения скорости плунжера в зависимости от угла поворота кулачкового вала (рис. 5.19).

Первый из указанных профилей (рис. 5.19а) характеризуется неизменной скоростью плунжера в процессе впрыска топлива, что создает определенные удобства при регулировании топливной аппаратуры на двигателе по опережению впрыска. Второй (рис. 5.19б) позволяет получить наибольшую среднюю скорость плунжера на участке его активного хода и в максимальной степени использовать заданный полный подъем профиля топливного кулачка.

Достаточно часты случаи, когда в качестве рабочей используется только участок восходящей ветви скорости (рис. 5.19в).

Средние скорости плунжеров для профилей топливных кулачков с треугольным законом изменения скорости при прочих равных условиях на 6. 12% выше.

Допустимое ускорение плунжера обычно лежит в пределах 200. 400 м/с 2 , а в отдельных случаях оно может достигать величины 500 м/с 2 и более.

Величина ускорения является исходной для выбора плунжерной пружины, которая должна обеспечивать постоянный контакт ролика толкателя с профилем топливного кулачка.

На практике достаточно часто для обеспечения заданных параметров впрыска применяют несимметричные законы изменения скорости плунжера, при которых наибольшая скорость достигается на участке, когда подъем плунжера осуществляется средним, наиболее крутым участком профиля кулачковой шайбы. В этот период давление впрыска достигает своего максимума, обеспечивая высокое качество распыливания.

На рисунке 5.20 приведены диаграммы скорости и перемещения плунжера ТНВД для случая, когда период подачи топлива насосом (геометрический период подачи) φ2 приходится на участок высоких значений скорости плунжера c. Отсечка при высокой скорости плунжера в конце подачи обеспечивает резкое падение давления впрыска и резкую посадку иглы форсунки. Период впрыска при низких значениях Pф перед посадкой иглы непродолжителен.

При эксплуатации дизелей для настройки топливной аппаратуры непосредственного действия с механическим приводом используют статические фазы топливоподачи насоса, которые еще называют геометрическими. Эти фазы доступны для контроля и регулирования без применения специальной аппаратуры. Чтобы обеспечить заданные действительные фазы впрыска топлива форсункой, необходимо установить такие геометрические фазы подачи топлива, которые учитывали бы гидродинамические свойства системы топливоподачи. Для удобства анализа процесс топливоподачи разбивают на отдельные периоды. Исходя из сказанного выше, таких периодов можно выделить три (рис. 5.18):

  • 1) период задержки впрыска (φзп)— угловой промежуток между началом подачи насосом и началом подачи форсункой, обусловленный сжимаемостью топлива, упругостью нагнетательного трубопровода, конечной скоростью распространения волны давления в нем, остаточным давлением в трубопроводе pост и давлением открытия иглы Pнпф. По опытным данным, у судовых малооборотных дизелей продолжительность периода составляет 2. 19° ПКВ;
  • 2) период активного впрыска — угловой промежуток между началом подачи форсункой (φнпф) до конца подачи насосом (φкпн), в течение которого в цилиндр впрыскивается основная часть цикловой порции топлива. Продолжительность его зависит от нагрузки дизеля. Характер изменения давления в течение периода активного впрыска в значительной степени зависит от скорости подъема плунжера ТНВД;
  • 3) период свободного истечения — угловой промежуток от конца подачи насосом (φкпн) и до конца подачи форсункой (φкпф). Процесс впрыска происходит за счет энергии сжатого топлива и упругости нагнетательного трубопровода. Впрыск топлива происходит при постепенно снижающемся давлении Pф, что обусловливает ухудшение качества распыливания. Топливо в этот период впрыскивается уже на линии расширения в цилиндре, что приводит к увеличению продолжительности догорания топлива и снижению экономичности дизеля.

Системы впрыска топлива современных двигателей внутреннего сгорания: бензиновые и дизельные системы

Основным назначением системы впрыска (иное название — инжекторная система) является обеспечение своевременной подачи топлива в рабочие цилиндры ДВС.

В настоящее время подобная система активно используется на дизельных и бензиновых двигателях внутреннего сгорания. Важно понимать, что для каждого типа двигателя система впрыска будет в значительной мере отличаться. Читайте отзывы о сайтах и компаниях по этой ссылке.

Так в бензиновых ДВС процесс впрыска способствует образованию топливовоздушной смеси, после чего происходит ее принудительное воспламенение от искры.

В дизельных же ДВС подача топлива осуществляется под высоким давлением, когда одна часть топливной смеси соединяется с горячим сжатым воздухом и почти моментально самовоспламеняется.

Система впрыска остается ключевой составной частью общей топливной системы любого автомобиля. Центральным рабочим элементом подобной системы является топливная форсунка (инжектор).

Как уже было сказано ранее в бензиновых двигателях и дизелях применяются различные виды систем впрыска, которые мы и рассмотрим обзорно в этой статье, а детально разберем в последующих публикациях.

Виды систем впрыска на бензиновых ДВС

На бензиновых двигателях используются следующие системы подачи топлива – центральный впрыск (моно впрыск), распределенный впрыск (многоточечный), комбинированный впрыск и непосредственный впрыск.

Центральный впрыск

Подача топлива в системе центрального впрыска происходит за счет топливной форсунки, которая расположена во впускном коллекторе. Поскольку форсунка всего одна, то эту систему впрыска называют еще – моновпрыск.

Системы этого вида на сегодняшний день утратили свою актуальность, поэтому в новых моделях автомобилей они не предусмотрены, впрочем, в некоторых старых моделях некоторых автомобильных марок их можно встретить.

К преимуществам моно впрыска можно отнести надежность и простоту использования. Недостатками подобной системы являются низкий уровень экологичности двигателя и высокий расход топлива.

Распределенный впрыск

Система многоточечного впрыска предусматривает подачу горючего отдельно на каждый цилиндр, оснащенный собственной топливной форсункой. При этом ТВС образуется только во впускном коллекторе.

В настоящее время большинство бензиновых двигателей оснащено системой распределенной подачи топлива. Преимуществами подобной системы являются высокая экологичность, оптимальный расход топлива, умеренные требования к качеству потребляемого топлива.

Непосредственный впрыск

Одна из наиболее совершенных и прогрессивных систем впрыска. Принцип работы подобной системы заключается в прямой подаче (впрыске) топлива в камеру сгорания цилиндров.

Система непосредственной подачи топлива позволяет получать качественный состав ТВС на всех этапах работы ДВС с целью улучшения процесса сгорания горючей смеси, увеличения рабочей мощности двигателя, снижения уровня отработанных газов.

К недостаткам данной системы впрыска можно отнести сложную конструкцию и высокие требования к качеству топлива.

Комбинированный впрыск

Система данного типа объединила в себе две системы – непосредственный и распределенный впрыск. Зачастую она применяется для уменьшения выбросов токсичных элементов и отработанных газов, благодаря чему достигается высокие показатели экологичности двигателя.

Все системы подачи топлива, пнименяемые на бензиновых ДВС могут быть оснащены механическими или электронными устройствами управления, из которых последняя наиболее совершенна, поскольку обеспечивает наилучшие показатели экономичности и экологичности двигателя.

Подача топлива в подобных системах может осуществляться непрерывно или дискретно (импульсно). По мнению специалистов, импульсная подача топлива является наиболее целесообразной и эффективной и на сегодняшний день применяется во всех современных двигателях.

Виды систем впрыска дизельных ДВС

На современных дизельных двигателях применяются такие системы впрыска, как система насос-форсунки, система Сommon Rail, система с рядным или распределительным ТНВД (топливным насосом высокого давления).

Наиболее востребованные и считаются наиболее прогрессивными из них системы: Сommon Rail и насос-форсунки, о которых ниже поговорим чуть подробнее.

ТНВД является центральным элементом любой топливной системы дизельного двигателя.

В дизелях подача горючей смеси может осуществляться как в предварительную камеру, так и напрямую в камеру сгорания (непосредственный впрыск).

На сегодняшний день предпочтение отдается системе непосредственного впрыска, которую отличает повышенный уровень шума и менее плавная работа двигателя, по сравнению с впрыском в предварительную камеру, но при этом обеспечивается гораздо более важный показатель – экономичность.

Система впрыска насос-форсунки

Подобная система применяется для подачи и впрыска топливной смеси под высоким давлением центральным устройством – насос-форсунками.

По названию можно догадаться, что ключевой особенностью данной системы является то, что в единственном устройстве (насос-форсунке) объединены сразу две функции: создание давления и впрыск.

Читать еще:  Двигатель бмв и ауди что лучше

Конструктивным недостатком данной системы является то, что насос оснащен приводом постоянного типа от распредвала двигателя (не отключаемый), который приводит к быстрому износу конструкции. Из-за этого производители все чаще делают выбор в пользу системы впрыска Сommon Rail.

Система впрыска Сommon Rail (аккумуляторный впрыск)

Это более совершенная система подачи ТС для большинства дизельных двигателей. Ее название пошло от основного конструктивного элемента – топливной рампы, общей для всех форсунок. Сommon Rail в переводе с английского как раз и означает – общая рампа.

В такой системе топливо подается к топливным форсункам от рампы, которую еще называют аккумулятором высокого давления, из-за чего у системы появилось и второе название – аккумуляторная система впрыска.

В системе Сommon Rail предусмотрено проведение трех этапов впрыска – предварительного, основного и дополнительного. Это позволяет уменьшить шум и вибрации двигателя, сделать более эффективными процесс самовоспламенения топлива, уменьшить количество вредных выбросов в атмосферу.

Для управления системами впрыска на дизелях предусмотрено наличие механических и электронных устройств. Системы на механике позволяют контролировать рабочее давление, объем и момент впрыска топлива. Электронные системы предусматривают более эффективное управление дизельными ДВС в целом.

Впрыск топлива: прямой vs распределенный.

  • Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

На самом деле, при помощи газовой педали осуществляется управление воздухоподачей внутрь цилиндров. А в зависимости от температуры мотора и его реальной производительности, будет подано и необходимое количество топлива для приготовления оптимального состава горючей смеси.

Например, у давно устаревших двигателей с карбюратором дозировка бензина осуществлялась по принципу разрежения воздуха, находящегося за заслонкой дросселя, управление которой осуществлялось педалью «газ». Сразу стоит сказать, что дозировка бензина в таком типе силового агрегата не отличалась точностью, вследствие чего карбюраторный мотор нельзя было назвать экономичным и экологически безопасным. В итоге это и послужило толчком к полному списанию карбюраторных моторов с производства.

Карбюраторные системы впрыска топлива с успехом заменили системы форсунок, подача и впрыск топливной смеси в которых осуществляется под давлением, его обеспечивает бензонасос.

Выделяют три основных типа систем впрыска:

  1. центральная;
  2. распределительная;
  3. прямая.

Однако сегодня на автомобилях применяются только последние две. Если говорить о центральной системе распределения впрыска (моновпрыске), то ее работа оказалась неэффективной, поскольку топливная смесь неравномерно распределялась по цилиндрам, а на впуске возникало значительное сопротивление, в результате чего не удалось достичь требуемого уровня экономичности. По этой причине и в связи с ужесточением норм экологической безопасности, моноврпрыск, как и карбюратор, также канул в Лету.

Относительно распределительной (многоточечной) системы впрыска MPI -Multi Point Injection можно сказать, что в ее работе также далеко не все в порядке. Однако, ее «конкуренту» – системе прямой подачи топлива, которую с конца ХХ века стал использовать на всем своем модельном ряде концерн Mitsubishi, более чем за 15 лет так и не получилось отправить MPI в отставку. Теме не менее, по прогнозам специалистов, это когда-нибудь да случится, и систему распределительного впрыска, как карбюратор и центральный впрыск отправят на «свалку автомобильной истории».

Действительно ли использование системы прямой топливоподачи настолько эффективно и оправдано, что скорое вытеснение с рынка MPI неизбежно? Дабы правильно ответить на этот вопрос, стоит провести сравнение этих систем топливоподачи.

В отличие от центрального типа топливовпрыска в этих обеих системах бензин впрыскивается через форсунку в цилиндр силового агрегата, но в распределенной системе предусмотрен впускной коллектор, через который вначале проходит топливо.

Во время прямой подачи топлива его впрыск осуществляется непосредственно в цилиндр, а точнее, в его камеру сгорания. Пожалуй, это и является главным отличием двигателей, которые у разных производителей имеют свои буквенные обозначения: CGI (Mercedes), FSI (Volkswagen), GDI (Mitsubishi), HPi (Peugeot) от модельного ряда моторов MPI.

Интересно, а чем же так хорош прямой впрыск топлива в цилиндр? Реально – ничем, если учитывать конструкционные особенности моторов. А все потому что в этом случае на создание горючей смеси и испарение паров бензина выделено слишком мало времени, чем при его прохождении через впускной коллектор, когда на выходе в цилиндр поступает уже полностью готовая смесь.

Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

  1. В системе прямого впрыска, давление проходящего через форсунку топлива, в несколько десятков раз выше, нежели в системе распределенного впрыска. Это достигается благодаря применению ТНВД в конструкции силовых агрегатов с прямым топливовпрыском.
  2. Специальная конструкция форсунок системы прямой топливоподачи позволяет раскручивать капельки бензина на выходе, благодаря чему быстрее осуществляется их испарение. В то время как вся функция форсунки распределительной системы состоит из средств формирования топливного факела.

Как видно, система топливоподачи MPI гораздо проще во всех отношениях. Но, это далеко не все. В двигателях с прямой подачей топлива на их производительность влияет распределение воздуха внутри них и количество впрыснутого топлива в цилиндры. По этой причине поршневая часть в агрегатах с системой прямого впрыска имеет сложную профилированную конструкцию.

Подобную функцию выполняют и клапаны впуска в конструкции коллектора системы прямой подачи топлива. В конструкции HPi, GDI, CGI и FSI агрегатов предусмотрено послойное образование горючей смеси. Это говорит о том, что полностью сгорает лишь небольшое количество топлива, находящееся вблизи свечи зажигания либо происходит процесс разрушения этого облака из горючего для того, чтобы сделать всю рабочую смесь более обогащенной. В силовых бензиновых агрегатах конструкции MPI каналы для впуска топлива необходимы исключительно для впрыска смеси бензина с воздухом в цилиндры, поэтому они не имеют заслонок и винтовой формы, как моторы с прямой топливоподачей.

Такими «наворотами» перечисление отличий системы прямой подачи топлива от распределенной не заканчивается. Однако, большинство заметных моментов уже описаны выше. Если копнуть поглубже, то стоит отметить, что топливный насос высокого давления, наличие специального впускного коллектора, поршневой части особой конструкции и сложной системы форсунок отчасти можно отнести к недостаткам, наличие которых вовсе не говорит, что лишенным этого двигателям MPI придется сойти с дистанции. Во всяком случае, в ближайшее время.

Но, рано или поздно, это все же произойдет. И опять-таки по той же причине, которая относительно недавно сделала карбюратор и систему центральной подачи топлива достоянием политехнических музеев – отсутствие у системы распределенной подачи бензина высоких показателей экономии топлива без потери мощности силового агрегата, и большое количество вредных соединений в выхлопных газах автомобиля. Проведенные тестирования систем топливоподачи выявили, что силовые агрегаты с системой прямого впрыска топлива в отличие от других моторов, имеющих одинаковый объем, позволяют экономить порядка 20-25% топлива, при этом их мощность возрастает на 10%. Естественно, что ни один из существующих автопроизводителей не станет пренебрегать заявленными удовольствиями!

Но, наличие большого количества преимуществ вовсе не говорит об отсутствии недостатков. У системы прямой подачи топлива есть свой «скелет в шкафу». Если рассматривать экологическую составляющую использования прямого впрыска, то она практически идеальна, за исключением одного «но» – повышенного содержания сажи в выхлопных газах. Это и делает систему прямой топливоподачи единственным конкурентом дизельным силовым агрегатам. А это уже реальная возможность FSI поладить с MPI. Это было бы классно, но, во всяком случае, этим системам придется ладить друг с другом в одном двигателе.

Именно эту идею и воплотили в жизнь конструкторы компании Volkswagen, объединив в одном моторе обе системы MPI и FSI. Двигатели 1,8 и 2,0 TFSI относятся к третьему поколению агрегатов EA888.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector