Характеристики дизельного двигателя воздушного охлаждения
Воздушная система охлаждения
В двигателях с воздушным охлаждением для обеспечения нормального теплового состояния двигателя площади наружных поверхностей головок и цилиндров увеличивают путем их оребрения. От поверхности оребрения тепло, поступающее к ней от стенок камеры сгорания и стенок цилиндра, отводится охлаждающим потоком воздуха.
Положительными особенностями системы воздушного охлаждения являются несложное обслуживание, надежность в эксплуатации, меньший по сравнению с системой жидкостного охлаждения вес и простота конструкции, упрощение эксплуатации двигателя в безводных районах, а также устранение опасности замерзания воды в радиаторе и рубашке двигателя (в случае заполнения их водой) при низких температурах.
Схема движения воздуха, охлаждающего однорядный четырехцилиндровый двигатель, представлена на рис. 3.8. Каналы, по которым движется воздух, разделены на участки: входа воздуха, прохождения воздуха через вентилятор 1, распределения воздуха по цилиндрам, прохождения воздуха по межреберным каналам и отводного трубопровода. В рассматриваемой схеме охлаждаемые поверхности находятся на линии нагнетаемого воздуха. В некоторых случаях воздух через межреберные каналы не нагнетается, а просасывается.
Для получения эффективного и равномерного охлаждения при минимальной затрате мощности в двигателях с воздушным охлаждением применяют дефлекторы. Дефлекторы представляют собой направляющие устройства для подачи охлаждающего потока воздуха к оребренным поверхностям с определенными скоростью и направлением.
Рис. 3.8. Схема системы воздушного охлаждения двигателя
При проектировании системы воздушного охлаждения стремятся обеспечить подачу охлаждающего воздуха в первую очередь к наиболее горячим местам головки цилиндров (перемычки между гнездами клапанов и др.), а также к свечам зажигания (в бензиновых двигателях) и форсункам (в дизелях). Для улучшения теплопередачи поток охлаждающего воздуха должен омывать поверхности охлаждения равномерно и с достаточно высокой скоростью.
Расчет системы воздушного охлаждения автомобильных и тракторных двигателей сводится к определению параметров оребрения двигателя, производительности и размеров вентилятора, а также затрачиваемой на привод вентилятора мощности.
Проведение этого расчета вследствие влияния ряда трудно учитываемых факторов, а также из-за отсутствия данных о взаимозависимости расчетных параметров системы охлаждения весьма сложно и связано с большими трудностями. В особенности сложен теоретический расчет теплопередачи и аэродинамического сопротивления оребрения двигателя. Поэтому на практике при проектировании системы воздушного охлаждения обычно задаются удельной поверхностью оребрения и широко пользуются экспериментальными данными прототипов двигателей.
В начале расчета задаются его исходными параметрами, к которым относятся: а) температура, давление и влажность окружающего двигатель воздуха, б) рабочие температуры деталей двигателя и в) расчетный режим работы двигателя.
В качестве расчетной температуры окружающего воздуха принимают температуру, равную 40 °С.
Превышение рабочих допустимых температур может вызвать нарушение работы (увеличение нагарообразования, коробление головки цилиндра, закоксовывание и зависание иглы форсунки в дизелях, детонацию и калильное зажигание в бензиновых двигателях, повышенный износ цилиндра, поршня и поршневых колец).
Средняя температура у оснований чугунных ребер цилиндров 130–170 °С; у оснований чугунных ребер головки цилиндров 170–220 °С. При алюминиевых сплавах средние температуры соответственно 130–150 и 160–200 °С.
Минимальные температуры внутренних поверхностей цилиндра и его головки стремятся обеспечить не ниже 130–140 °С, т. е. значительно выше точки росы выпускных газов.
Характеристики дизельного двигателя воздушного охлаждения
Продолжается совершенствование двигателей колесной техники
Колесные тракторы и самоходные шасси под брендом АГРОМАШ производства предприятий Концерна «Тракторные заводы» традиционно оснащаются двигателями воздушного охлаждения мощностью от 25 до 90 л.с. Существуют также стационарные модификации двигателей мощностью от 20 до 40 л.с., которые используются в гражданских и оборонной отраслях в составе электро- и сварочных агрегатов, воздушных компрессоров, водяных насосов, автобетоновозов и т.д. Все эти двигатели имеют между собой очень высокую степень унификации (более 90%), и отличаются только количеством цилиндров (2, 3 и 4), а также наличием (или отсутствием) турбонаддува.
В чем преимущества двигателей воздушного охлаждения в сравнении с двигателями жидкостного охлаждения (ДЖО)?
- Двигатели воздушного охлаждения отличаются более простой конструкцией: у них нет водяного насоса, радиатора (изготавливаемого, к тому же, из дорогостоящих цветных металлов), термостата, патрубков, хомутов, дополнительных труб подвода и отвода жидкости.
- Они обладают высокой ремонтопригодностью: наличие индивидуальных цилиндров позволяет, в случае необходимости, производить замену отдельных цилиндров, что делает возможным ремонт даже в полевых условиях. В ДЖО в этом случае необходима либо замена блока цилиндров, либо выпрессовка гильз цилиндров с последующей их заменой.
- Их отличает высокая живучесть. Повреждение радиатора и патрубков в ДЖО, а также простое ослабление хомутов на водяных патрубках обуславливает невозможность эксплуатации в связи с утечкой жидкости. Это особенно актуально в сельской местности и отдаленных районах, где далеко не всегда можно найти антифризы, а также при эксплуатации в условиях экстремальных температур. При работе в условиях жаркого климата вызывает опасность процесс выкипания охлаждающей жидкости, затруднительна эксплуатация также и в районах с повышенной запыленностью – при уборке, например, хлопка, или в условиях пустынь и степей, поскольку в этом случае радиаторы системы жидкостного охлаждения быстро забиваются.
Всех этих недостатков лишены двигатели воздушного охлаждения. Более того, даже повреждение оребрения цилиндров и головок цилиндров не помешает дальнейшей эксплуатации двигателей. В боевых условиях важным преимуществом двигателей воздушного охлаждения является также значительно меньшее время вывода двигателя на рабочий режим, поскольку не требуется прогрева жидкости, что особенно ярко проявляется в зимнее время. Вышеперечисленные преимущества обусловливают и меньшие эксплуатационные затраты
В Концерне «Тракторные заводы» постоянно ведутся работы по совершенствованию двигателей воздушного охлаждения в направлении как обеспечения современных международных требований к экологической чистоте, так и повышению их агрегатной мощности:
- совершенствование системы газообмена за счет снижения сопротивления впускного и выпускного трактов, переход на трех- и четырехклапанные головки цилиндров, согласование вихревого движения заряда с характеристиками топливоподачи и геометрией камеры сгорания;
- оптимизация характеристик системы турбонаддува, в том числе за счет применения охлаждения наддувочного воздуха;
- модернизация системы топливоподачи за счет управления углом опережения впрыскивания топлива, повышения интенсивности подачи и максимальных значений впрыскивания топлива, а также увеличения количества сопловых отверстий распылителя;
- переход на камеру сгорания открытого типа;
- применение регулируемой по нагрузке и скоростному режиму рециркуляции отработавших газов (ОГ) с обеспечением охлаждения перепускаемых газов.
Так, в 2008 году на макетном образце трехцилиндрового двигателя с турбонаддувом были реализованы европейские экологические нормы уровня Stage-3A за счет применения охлаждения надувочного воздуха. А в 2013 году переход с двухклапанных головок цилиндров (ГЦ) на трехклапанные позволил разнести по разным сторонам ГЦ впускные и выпускной канал, снизив, тем самым, нежелательный подогрев впускного воздуха и, соответственно, тепловую напряженность двигателя (рис.1). Последнее мероприятие обеспечило возможность отказаться от наклонного расположения форсунки (35о к вертикали), перейдя к вертикальному, и применить многосопловые распылители (с 6-ю отверстиями вместо традиционных 3-х), позволившие повысить степень равномерности распределения топлива по камере сгорания (рис.2). Результатом стало значительное улучшение топливной экономичности двигателей (на 6 — 8%) и увеличение агрегатной мощности (на 15 — 25%).
Сравнительные характеристики дизелей с двух- и трехклапанными головками цилиндров
Кроме того, в концерне ведутся работы по применению альтернативных топлив: водо-топливных эмульсий, различных газов. В результате появились газовые тракторы производства ООО «Завод инновационных продуктов», работающие на компримированном (т.е. сжатом) природном газе (КПГ). Однотопливные газовые двигатели созданы на базе дизелей, и, сохранив все преимущества воздушного охлаждения, добавили ряд предпочтений применения самого экологически чистого углеводородного топлива – метана: увеличение ресурса двигателей в 1,5 — 2,0 раза, уменьшение эксплуатационных затрат на топливо в 2,5 — 3,0 раза, снижение загрязнения окружающей среды за счет полного отсутствия сажи и оксидов серы в ОГ (что характерно для дизелей), уменьшения шумности рабочего процесса.
Дальнейшее совершенствование двигателей воздушного охлаждения планируется проводить в направления развития бортовой диагностики, что будет реализовано за счет применения встроенных датчиков:
- расхода топлива и воздуха;
- температуры масла, воздуха, ОГ, топлива, деталей;
- давления воздушного заряда в системе впуска и ОГ в системе выпуска, в системе смазки;
- скоростного режима.
Основная цель проводимых в этом направлении работ по совершенствованию двигателей воздушного охлаждения – это добиться простоты конструкции, надежности в эксплуатации и экологической безопасности.
Алексей Кульчицкий, д.т.н.,
главный специалист ООО «Завод инновационных продуктов»
Авиационный двигатель: воздушного или водяного охлаждения?
Рассматривать станем на примерах истребителей, просто потому, что бомбардировщику с его задачами, в принципе, без разницы, на каком двигателе лететь. Летим и летим, долетели, высыпали бомбы, летим назад. У истребителей все было несколько сложнее в плане задач.
Итак, кто был лучше: двигатель воздушного охлаждения или водяного?
Да, будем называть двигатель жидкостного охлаждения по привычке водяным, поскольку ну какие там антифризы были в 30-40 годах прошлого века? В лучшем случае – вода с этиленгликолем. В худшем – вода с солью или просто вода.
Противостояние «жидких» и «воздушных» двигателей началось тогда, когда появились эти моторы. Точнее, когда инженеры додумались до того, что стоит прекратить вращать цилиндры роторного мотора вокруг коленвала. И так появилась «воздушная звезда». Вполне нормальный двигатель, без закидонов и проблем. Но к концу Первой мировой инженеры вполне смогли уже адаптировать автомобильный двигатель водяного охлаждения, так что соревнование началось уже тогда.
И на протяжении всего существования конкурировали друг с другом V-образные двигатели жидкостного охлаждения и звездообразные двигатели воздушного охлаждения.
Каждый из этих типов двигателей имеет свои достоинства и недостатки. Для того чтобы сравнить, возьмем несколько моторов из обеих категорий. Скажем так, лучшие из лучших.
За «воздушников» сыграют АШ-82 и Pratt & Whitney R-2800 Double Wasp, за «водяных» — «Роллс-Ройс» «Мерлин Х», «Даймлер-Бенц» DB 605, Климов ВК-105.
В таблице есть одна несправедливость. Знатоки сразу поймут, о чем речь: конечно, это вес. У «водяных» в ТТХ всегда дается так называемый «сухой» вес, то есть без воды/антифриза. Соответственно, они будут за кадром, то есть на ВПП, тяжелее. Где-то на 10-12%, а это немало.
А теперь пойдем сравнивать.
Конструкция
Конструктивно, конечно, проще воздушные. Не нужна рубашка охлаждения, не нужен радиатор, не нужна броня, защищающая радиатор, трубопроводы, жалюзи радиатора.
Воздушный двигатель проще, а значит, дешевле в производстве и обслуживании. И надежнее в бою. Известно, что двигатели воздушного охлаждения выдерживали несколько попаданий и продолжали работать, лишившись двух и даже трех цилиндров. А вот водяной двигатель запросто выходил из строя в случае одного попадания в радиатор.
1:0 в пользу воздушных двигателей.
Охлаждение
Эффективнее, в общем, воздушные. Главной проблемой двойных звезд был отвод тепла от второго ряда цилиндров. Если конструкторы с этим справлялись, все было просто прекрасно.
В полете самолет спокойно предоставлял необходимый объем воздуха для охлаждения головок цилиндров. А у водяного двигателя существовало ограничение в виде температуры жидкости, которую ограничивала точка кипения воды/антифриза. Температура головок цилиндров воздушного двигателя в любом случае выше, чем температура охлаждающей жидкости, так что при одном объеме воздуха, проходящем через головки цилиндров воздушного и радиатор водяного двигателей, эффективнее был воздушный, поскольку площадь радиатора явно уступала площади звезды. И на отвод одной единицы тепла требовался больший объем воздуха, чем от головок цилиндров.
Тем более тогда, когда со временем радиаторы упрятали в тоннели.
2:0 в пользу воздушных.
Аэродинамика
Да, здесь однозначно водяные двигатели имели преимущество. Более тонкий и острый нос, более узкий фюзеляж – самолеты с водяными двигателями были заметно быстрее своих конкурентов с воздушными двигателями.
Толстый лоб самолета с воздушным двигателем – это серьезный удар по аэродинамике самолета. А в начале пути и вообще кольцо Тауненда считалось верхом аэродинамических изобретений.
И в начале 40-х получилось некое такое разделение: самолеты с водяными двигателями были более скоростными, самолеты с воздушными – более маневренными.
Тут стоит отметить, что более легкие И-16, А6М, «Рок» действительно были весьма маневренными машинами. Но уступавшими в скорости своим водяным конкурентам.
Тут лучший пример — наш И-16.
Фактически с «Циклоном» от фирмы «Райт» И-16 запросто лупил в Испании Bf-109B. Однако, как только у немцев появился DB-600, давший «Эмилю» преимущество в скорости и вертикали, роли поменялись тут же, и вчерашний охотник стал дичью.
Реально дело было не только в более мощном поколении моторов, дело было и в аэродинамике. Самолеты стали более тонкими и гладкими, радиаторы стали утапливать в крылья и фюзеляжи, а применение антифризов позволило улучшить теплоотдачу и уменьшить размер и – немаловажно – вес радиаторов и охлаждающей жидкости, которую надо было заливать в систему.
Так что 2:1 в пользу воздушных.
Вооружение
А тут нюансов очень много.
Водяной двигатель был просто создан для настоящих авиаснайперов, поскольку позволял использовать такую замечательную вещь, как мотор-пушку. Наводилась пушка точно по носу самолета, никаких проблем. Плюс вокруг блока цилиндров можно было разместить пару пулеметов.
Все это давало очень неплохой секундный залп с минимальным рассеиванием. Очень важный момент.
Здесь сразу нужно давать балл водяным. 2:2.
Однако кто сказал, что у истребителей с воздушным охлаждением все обстояло печально? Совершенно нет!
Начнем с того, что были два уникальных истребителя, Ла-5 и Ла-7, которым мотор АШ-82 позволил разместить две и три синхронных пушки ШВАК. Да, боекомплект был вполне приличный, около 120 снарядов на пушку, этого выше крыши хватало, чтобы провести бой и разнести любой бомбардировщик противника.
Но истребители Лавочкина – это очень интересное исключение из правил.
А вот все остальные, немцы, японцы, американцы, предпочли воспользоваться тем, что в крыле и около него не стоят громоздкие радиаторы охлаждения, и разместили в крыльях целые батареи.
Плюсов, кстати, тоже достаточно. Проще обслуживать… нет, не оружие. Как раз двигатель, вокруг которого не натыкано пушек, пулеметов и патронов/снарядов. В крыле места больше, соответственно, можно разметить больший боезапас и большее количество стволов.
«Фокке-Вульф» 190А-2, обладатель одно из самых впечатляющих секундных залпов, нес в крыльях четыре 20-мм пушки. Правда, был «секрет». Корневые (расположенные ближе к фюзеляжу) пушки имели боезапас 200 снарядов, а дальние – всего 55. Но все равно внушительно. Плюс два синхронных пулемета.
Японцы на Ki-84 «Хаяте» обошлись меньшим боекомплектом для крыльевых пушек, всего 150 снарядов и 350 патронов для синхронных пулеметов.
Но наиболее весомых успехов в плане размещения оружия добились, на мой взгляд, американцы. Р-47 с восемью 12,7-мм «Браунингами» и F4U «Корсар» с шестью – это весьма. Плюс боекомплект из 400-440 патронов на ствол. У крайних от фюзеляжа крыла б/к мог быть уменьшен до 280 патронов, но это реально несущественно.
Можно долго говорить на тему, что лучше, две пушки или шесть крупнокалиберных пулеметов, но это тема отдельного исследования. Есть и плюсы, и минусы. В любом случае, 3 000 патронов против 300-400 снарядов – есть о чем говорить.
Так что в количественном плане размещения вооружения истребители с воздушными двигателями оказались ничуть не хуже коллег. Более того, так как воздушные двигатели были мощнее водяных, то, соответственно, позволяли брать на борт больше всего. Логично.
А если взять в качестве сравнения Як-9 с одной 20-мм пушкой и одним 12,7-мм пулеметом против американского истребителя с батареей из восьми 12,7-мм «Браунингов», то очень сложно сказать, кто станет победителем. Асу-снайперу, конечно, потребуется всего десяток-другой снарядов, а вот если речь пойдет о летчиках среднего плана… Там пулеметы будут поинтереснее, потому что хоть что-то да попадет.
Балл воздушным. 3:2.
Защита
Здесь все совершенно по-разному. Водяной двигатель надо было защищать. Защищать сам двигатель от прострела, защищать радиатор, защищать всю арматуру. Ибо одно-два попадания в рубашку двигателя или радиатор – и все, прилетели. Да, какое-то время до того момента, как двигатель заклинит от перегрева, имеется. И можно попробовать дотянуть до удобного места либо на свою территорию, либо – парашют. Не очень надежно, не очень удобно.
Воздушной звездой можно было просто защищаться, как бронеплитой. Прострелов эти двигатели, конечно, боялись, но отмечались случаи, когда «Фокке-Вульфы» без пары цилиндров дымили, но летели. А наши «Ла» вполне нормально доползали до аэродромов с тремя выбитыми цилиндрами. В истории зафиксировано множество таких случаев.
Потому и «Ла», и «Тандерболт», и «Фокке-Вульф» очень неплохо зарекомендовали себя именно как штурмовики. Воздушным двигателем можно было прикрыться от малокалиберных зениток и разносить все на своем пути. И бомбы более мощные двигатели запросто позволяли взять на борт. Ла-5 – 200 кг, «Фокке-Вульф» 190 серии F – до 700 кг, а «Тандерболт» серии Д – до 1135 кг.
Сейчас некоторые скажут, что лучший штурмовик Второй мировой войны летал на водяном моторе, и будут правы.
Однако Ил-2 – это штурмовик, который был рожден штурмовиком. А выше шла речь о истребителях, которые стали штурмовиками. Разница есть, и в первую очередь именно в плане защиты.
А в плане защиты однозначно впереди двигатели воздушного охлаждения. 4:2.
Вот такая картина получается. Виной тому, конечно, появившиеся в начале 1940-х двухрядные звёзды. И они затмили водяные двигатели, которые сделали большой шаг вперед с самого начала своего появления.
Главным шагом в развитии двигателей воздушного охлаждения стал момент, когда конструкторы справились с проблемой охлаждения второго ряда цилиндров. Для этого было сделано много: раздвигали ряды цилиндров, чтобы дать воздуху возможность лучше обтекать головки цилиндров, увеличивали площадь маслорадиаторов, так как большая часть тепла отводилась именно через масло, увеличивали оребрение цилиндров.
Именно решение проблемы охлаждения вывело звезды вперед в плане мощности и массы. Это было просто: двойная звезда имела больший литраж по сравнению с водяным двигателем. Отсюда и большая мощность.
Если сравнить удельную мощность наших моторов на уровне 1943 года, то АШ-82Ф имел показатель 1,95 л.с./кг, а ВК-105П – 2,21 л.с./кг массы двигателя. Вроде бы ВК-105П был лучше. И любой самолет с ним должен был иметь преимущество.
Однако если мы возьмем самолет, который летал и на ВК-105, и на АШ-82 и сравним, то без удивления увидим, что ЛаГГ-3 с ВК-105П в плане ЛТХ проигрывал Ла-5 с АШ-82 по всем параметрам. И это несмотря на то, что Ла-5, скажем так, не блистал аэродинамически.
Мощность двойной звезды АШ-82 решила все проблемы аэродинамики, просто вытащив самолет за счет «лишних» 500 л.с.
Конечно, конструкторы водяных двигателей не собирались сдаваться и попробовали догнать воздушников. Были попытки спарить двигатели, чтобы два двигателя работали через редуктор на один винт. В реальности не получилось ни у кого.
Более умным был проект Н- и Х-образных двигателей, когда несколько блоков цилиндров работали бы на один коленвал. Такой двигатель получился у британцев, Нэпир «Сейбр», 24-цилиндровый монстр. «Тайфун», конечно, с ним полетал, но как только британцы довели до ума свой воздушный Бристоль «Центавр», то и про «Сейбр» благополучно забыли.
В самом конце Второй мировой войны появились водяные двигатели нового поколения, с увеличенным литражом в основном за счет увеличения диаметра поршня и утончения стенок блоков. Это с одной стороны, сказалось на ресурсе, с другой – дало необходимую мощность. АМ-42, «Гриффон», DB-603, Юмо-213 – все они были хороши в этом плане, но опоздали на войну.
Для того чтобы поставить последнюю точку в соревновании поршневых двигателей, стоит посмотреть на окончание их карьеры.
Когда появились турбореактивные двигатели, поршневым пришлось уйти на заслуженный покой.
Уделом двигателей внутреннего сгорания стала лёгкая и спортивная авиация, где были свои требования к двигателям.
Воздушные двигатели оккупировали спортивную авиацию, а вот водяным просто пришлось уйти совсем. Правда, в последние годы намечается тенденция по возвращению в авиацию дизелей, но в любом случае это не столько авиационные, сколько автомобильные двигатели.
Так что, подытоживая все сказанное, я бы взял на себя ответственность по утверждению того, что авиационные двигатели внутреннего сгорания с воздушным охлаждением были более эффективны, чем их коллеги с жидкостным охлаждением сразу по нескольким параметрам.
То, что чудо-двигатель АШ-82 работает до сих пор как в самолетах, так и в вертолетах, только подтверждает это утверждение.
Устройство и принцип работы системы охлаждения двигателя
Помимо главной функции отвода тепла от основных узлов двигателя автомобиля, система охлаждения решает ряд дополнительных задач. Фактически она участвует в работе системы смазки, отопления салона, выхлопа и рециркуляции отработавших газов, турбонаддува и коробки передач. О том, как она устроена, а также в чем заключается принцип работы охлаждающей системы и пойдет речь далее.
- Виды систем охлаждения двигателя
- Устройство и принцип работы системы охлаждения ДВС
- Как устроен радиатор охлаждения двигателя
- Особенности работы датчика температуры ОЖ
- Что используют в качестве охлаждающих жидкостей
Виды систем охлаждения двигателя
Регулирование температуры автомобильного двигателя может осуществляться при помощи охлаждающей жидкости (антифриза, ОЖ) и посредством циркуляции воздуха. Исходя из этого различают три вида систем:
- Воздушная. Физически представляет собой обдув, благодаря которому происходит вытеснение горячего воздуха из подкапотного пространства в атмосферу. Воздушное охлаждение может быть естественным и принудительным (с использованием вентилятора). В силу низкой эффективности как самостоятельная система практически не применяется.
- Жидкостная. Представляет собой систему трубчатых контуров, по которым циркулирует охлаждающая жидкость. Жидкостное охлаждение может быть принудительным (перекачка насосом), термосифонным (за счет разности в плотности нагретой и охлажденной жидкостей) и комбинированным (охлаждение головки блока цилиндров осуществляется принудительно, а остальные узлы термосифонным принципом). Такая система более эффективна в сравнении с воздушной, но при определенных режимах работы (длительный простой с включенным двигателем, повышенные температуры окружающей среды) может быть недостаточной для качественного охлаждения.
- Комбинированная. Представляет собой использование и воздушного обдува, и жидкостных контуров.
Системы охлаждения на основе жидкости также разделяются на открытые и закрытые. Первые имеют сообщение с атмосферой при помощи пароотводной трубки, а во вторых жидкость полностью изолирована от окружающей среды. В закрытых системах давление антифриза больше, а следовательно, выше и температура кипения. Это позволяет использовать их при высоких температурах нагрева жидкости (до 120°C).
Устройство и принцип работы системы охлаждения ДВС
Наиболее популярной в современных автомобилях является комбинированная система охлаждения двигателя с принудительной циркуляцией воздуха и жидкости. Она состоит из следующих элементов:
- Радиатор системы охлаждения.
- Вентилятор радиатора.
- Малый и большой охлаждающие контуры.
- Рубашка системы охлаждения (система каналов в блоке цилиндров).
- Датчик температуры.
- Термостат.
- Расширительный бачок.
- Насос (помпа).
- Радиатор печки.
- Масляный радиатор (опционально).
- Радиатор системы рециркуляции отработавших газов (опционально).
В момент запуска двигателя насос начинает перекачку жидкости по малому контуру. Когда двигатель нагревается до рабочей температуры, срабатывает термостат и открывает второй (большой) контур охлаждения. Проходя через узлы мотора, охлаждающая жидкость нагревается и расширяется. При увеличении температуры часть жидкости поступает в расширительный бачок. Это позволяет компенсировать излишний объем, независимо от того, какое давление установилось в системе.
Большой и малый круги циркуляции ОЖ
Проходя через участок радиатора системы охлаждения, антифриз вновь остывает и возвращается на новый цикл. Если этот режим снижения температуры оказывается недостаточным, срабатывает температурный датчик, передающий сигнал блоку управления двигателя и запускающий вентилятор воздушного охлаждения. Если и его оказывается недостаточно, на приборную панель (индикатор) поступает сигнал о перегреве двигателя.
Масляный радиатор и радиатор рециркуляции отработавших газов может присутствовать не во всех системах охлаждения. Они необходимы для синхронного снижения температуры смазки и выхлопа, что делает эксплуатацию автомобиля более безопасной и экономичной. В автомобилях с турбонаддувом также может присутствовать еще один охлаждающий контур для снижения температуры воздуха наддува.
Как устроен радиатор охлаждения двигателя
Радиатор системы охлаждения ДВС состоит из следующих элементов:
- Сердцевина. Она может быть трубчатой (вертикальные трубки овального или круглого сечения, объединенные тонкими горизонтальными пластинами), пластинчатой (изогнутые пары пластин, спаянные по краям) и сотовой (спаянные трубки с сечением в виде правильного шестиугольника).
- Верхний бачок. Оснащен заливной горловиной с герметичной пробкой, а также патрубком для установки шланга, подводящего антифриз. В горловине выполнено отверстие для установки пароотводящей трубки. Последняя имеет паровой клапан, который открывается в случае закипания.
- Воздушный клапан. Он необходим для наполнения радиатора воздухом после остановки двигателя. Когда охлаждающая жидкость полностью остывает, без подачи дополнительного объема воздуха в системе может возникнуть сильное разрежение, провоцирующее сдавливание трубок.
- Нижний бачок. Оснащен патрубком для крепления шланга отвода жидкости.
- Крепления.
Принцип работы радиатора основан на многоуровневой циркуляции воздуха в его сердцевине, что делает снижение температуры охлаждающей жидкости, проходящей через него, более интенсивным.
Наиболее эффективными являются радиаторы пластинчатого типа, но они подвержены быстрому загрязнению, а потому самой популярной конструкцией стали трубчатые.
Особенности работы датчика температуры ОЖ
Температурный датчик позволяет контролировать состояние системы. Определить, где находится датчик температуры охлаждающей жидкости просто: как правило, он расположен в канале головки блока цилиндров. Он представляет собой терморезистор в герметичном корпусе, который может быть изготовлен из бронзы, пластика и латуни. На корпусе имеется резьба для установки в канал.
Принцип работы датчика основан на следующем эффекте: при повышении температуры сопротивление чувствительного элемента снижается, а при ее уменьшении увеличивается. Показатель сопротивления передается на электронный блок управления двигателем. Чтобы при этом данные состояния охлаждающей жидкости были точными, датчик должен быть полностью погружен в нее. При температуре 100°C сопротивление датчика температуры охлаждающей жидкости должно быть порядка 177 Ом. С учетом погрешностей измерения допускается показатель сопротивления 190 Ом. Если же отклонения больше допустимых, датчик необходимо заменить.
Проверить автомобиль на наличие неисправностей, в том числе и датчика температуры ОЖ, проще всего при помощи автомобильного диагностического сканера. К примеру, это можно сделать недорогим мультимарочным устройством Rokodil ScanX.
Мультибрендовый сканер Rokodil ScanX
После диагностики авто, сканер укажет на имеющиеся коды ошибок. В частности если появились ошибки P0115 — P0119, причина неисправности будет в самом датчике ОЖ, разъеме подключения или проводке. После чего необходимо более детально рассмотреть причину неисправности. Также с помощью Rokodil ScanX можно проверить показания датчика в режиме реального времени. На “холодном” двигателе его показания должны быть примерно равны температуре окружающей среды, а на горячем не превышать 150 ˚С.
В некоторых моделях автомобилей может быть предусмотрено два датчика температуры. Один отвечает исключительно за включение вентилятора радиатора, а второй представляет собой датчик указателя текущей температуры охлаждающей жидкости.
Что используют в качестве охлаждающих жидкостей
В роли рабочей жидкости в системах охлаждения изначально применялась дистиллированная или деионизированная вода. Однако для современных двигателей она не обеспечивает нужный диапазон рабочих температур. Помимо этого, она склонна к коррозионной активности в отношении металлов, что снижает срок эксплуатации системы охлаждения. Для устранения этих недостатков в качестве охлаждающей жидкости сегодня применяются составы со специальными присадками (этиленгликоль, ингибиторы коррозии), что повышает характеристики всей системы. Чаще всего используется антифриз, который имеет более низкий порог замерзания.
При возникновении ситуации, когда требуется экстренный долив охлаждающей жидкости, можно использовать обычную чистую воду. Однако для корректной работы системы при первой возможности такой раствор необходимо заменить на качественный антифриз.
Замена охлаждающей жидкости проводится каждые 60-100 тысяч километров пробега. В охлажденном состоянии (при выключенном двигателе) ее количество должно быть на уровне нижнего края патрубка расширительного бачка охлаждающей системы. Для удобства на нем выполнены отметки “Min” и “Max”. Когда количество жидкости ниже минимальной отметки – выполняют долив. Если после работы уровень вновь упал – это свидетельствует о разгерметизации системы.
Значимость системы охлаждения двигателя не вызывает сомнений. А потому стоит регулярно проводить профилактический осмотр ее основных узлов. Это позволит избежать перегрева двигателя и возникновения критических поломок.