28 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характерные точки механической характеристики асинхронного двигателя

Характерные точки механической характеристики асинхронного двигателя

3.2.9. Механическая характеристика асинхронного двигателя ( n = f (М) )

Из схемы замещения (см. рис. 3.16) имеем

;

.

Из условия получаем координату экстремальной (критической) точки

; .

Так как мало, то им можно пренебречь.

– формула Клосса.

Анализ механической характеристики (рис. 3.18).

Анализ выражения для определения момента показывает, что момент пропорционален квадрату приложенного напряжения, поэтому асинхронный двигатель очень критичен к изменению

Рис. 3.18. Механическая характеристика асинхронного двигателя

напряжения питания. Критический момент М кр не зависит от сопротивления обмотки ротора , а критическое скольжение S кр – от величины приложенного напряжения U . Асинхронный двигатель имеет малый пусковой момент, что создает проблемы при запуске двигателя под нагрузкой.

Изменения напряжения питания U и активного сопротивления R 2 влияют на механические характеристики асинхронного двигателя (рис. 3.19).

Рис. 3.19. Влияние U ( а) и R 2 ( б) на механическую

характеристику асинхронного двигателя

Область работы асинхронного двигателя. Включает в себя область устойчивой работы двигателя 1– 2 и неустойчивой работы 2– 3 (рис. 3.20). В области устойчивой работы проявляется свойство саморегуляции скорости.

Для оценки перегрузочной способности двигателя вводится коэффициент перегрузки

.

При попадании в область неустойчивой работы двигатель останавливается.

Характеристики асинхронного двигателя

К энергетическим характеристикам асинхронного двигателя относятся КПД двигателя(η) коэффициент мощности (cosφ) и скольжение S.
коэффициент полезного действия (η) вычисляется как отношение полезной мощности на валу двигателя Р2 кВт, к активной мощности, потребляемой двигателем из сети Р1 кВт;
η = Р2/ Р1 коэффициент мощности (cos(φ)вычисляется как отношение потребляемой активной мощности Р1 кВт, к полной мощности, потребляемой из сети S1 кВА;

По ГОСТ Р. 51677-2000 асинхронные двигатели общепромышленного назначения делятся на двигатели с нормальным КПД и двигатели с повышенным КПД. У асинхронных двигателей с повышенным КПД, суммарные потери не меньше, чем на 20%, чем у двигателей с нормальным КПД такой же мощности и частоты вращения. Коэффициенты мощностей (cosφ) асинхронных двигателей определены в ГОСТ.Р 51677. Значения КПД и cosφ конкретного асинхронного двигателя можно узнать по каталогу или по шильдику.

Причем КПД и cosφ асинхронного двигателя определяются и нагрузкой машины. В справочниках по электрическим машинам можно увидеть эти зависимости.

Линейный ток двигателя можно определить исходя из номинальной полезной мощность (Р2, кВт), номинального напряжения (UH, В ), КПД (η) и cosφ.

Мощность, потребляемая из сети можно определить из формулы:

Скольжение вычисляется как разницу между номинальной n1 и синхронной nc частотой вращения двигателя, приведенной к номинальной скорости двигателя n1:

Номинальную частоту вращения ротора n1 или скольжение (S, %)можно определить по каталогу двигателя или прочесть на его шильдике.

Механические и пусковые характеристики асинхронного двигателя

Одной из основных характеристик асинхронного двигателя, является механическая характеристика. Механической характеристикой называют зависимость скорости вращения или скольжения от вращающего момента на валу двигателя. Она позволяет сравнить и согласовать механические свойства двигателя и рабочего механизма. Соответственно, зависимость скорости вращения или скольжения от тока статора называют электромеханической характеристикой.

Механическая характеристика асинхронного двигателя определяет зависимость момента на валу двигателя от скольжения, при сохранении неизменного напряжении и частоты питающей сети

Пусковые характеристики определяют величину пускового моментаMп, минимального момента Мmin, максимального или критического момента Мкр., пускового тока Iп или пусковой мощности Sп или их отношениями. Диаграмма момента, приведенного к номинальному моменту, от скольжения получила название относительной механической характеристики.

Читать еще:  Датчик температуры двигателя соболь где находится

Номинальный вращающий момент можно определить по формуле:

P2н- номинальная мощность , кВт,
N1н- номинальная частота вращенияю, об/мин.

Пусковые характеристики асинхронного двигателя

Пусковые характеристики асинхронного двигателя регламентирует ГОСТ 28327 ( МЭК 60034 — 12), а их значения приводятся в каталогах. Стандартные асинхронные двигатели могут иметь два исполнения по механическим характеристикам, которые определены в ГОСТ 28327 и МЭК 60034-12:
N – двигатели с нормальный моментом;
Н –двигатели с повышенным моментом.

Двигатели , изготовленные в исполнении N, рассчитывают на два последовательных пуска с остановкой между пусками из холодного состояния или на один пуск из нагретого состояния, после работы при номинальной нагрузке.

Момент сопротивления нагрузки при запуске прямо пропорционален квадрату частоты вращения и равняется номинальному моменту при номинальной частоте вращения, а значение внешнего момента инерции, γ , кг*м2, не должно превышать рассчитанного по формуле

где Р-номинальная мощность двигателя, кВт;
р — число пар полюсов;

При построении характеристики предполагается, что момент сопротивления нагрузки остается постоянным и равен номинальному моменту. Кроме того он не зависит от частоты вращения. Значение же внешнего момента инерции не превышаетт 50% величины, полученной по приведенной выше формуле.

Механические характеристики асинхронных мшин зависят в том числе и от типа ротора, его номинальной мощности, и от числа пар полюсов.

Ввиду того, что разность в значениях момента при соответствующих скольжениях у двигателей с различным числом пар полюсов невелика, и не превышает значения поля допуска на моменты. Различные механические характеристики для разных исполнений асинхронных двигателей показаны на рис

1 — исполнение N; 2 — исполнение Н; 3 — с повышенным скольжением. Механические характеристики группы двигателей, одной серии, или ее части обычно укладываются в некоторую зону. По средней линии этой зоны можно составить групповую механическую характеристику. Величина зоны групповой характеристики меньше поля допуска двигателей на моменты.

Механическая характеристика асинхронного двигателя, её анализ.

Устройство и применение АД с к.з. ротором.

1) Неподвижный статор: сердечник из шихтованной электротехнической стали с (как правило) тремя фазными обмотками, образующими полюса, и сдвинутыми в пространстве на 120 град.

Обмотка статора обычно выполняется с изоляцией лаком.

2) Подвижный короткозамкнутый ротор: сердечник по типу статорного. Обмотка в пазах – медные или алюминиевые стержни , закороченные кольцами по торцам сердечника.

Обмотка ротора в некоторых маломощных двигателях выполняется путем отливки под давлением из алюминия .

В маломощных АД воздушный зазор между статором и ротором составляет 0,2 – 0,3 мм, в двигателях большой мощности – несколько миллиметров.

Обмотка фазного ротора асинхронной машиныЗвезда или треугольникПервая фаза Вторая фаза Третья фазаР1 Р2 РЗ
ЗвездаПервая фаза Вторая фаза Третья фаза Нулевая точкаР1 Р2 РЗ 0
Обмотка статора. Открытая схе-Первая фазаU1U2
маВторая фазаVIV2
Третья фазаW1W2
Обмотка фазного ротора асин-Первая фазаК1К2
хронного двигателя, открытаяВторая фазаL1L2
схемаТретья фазаMlМ2

13. Работа АД в режиме торможения противовключением.

Необходимо перевести схему в реверс и отключить ее при скорости равной нулю. Контроль скорости осуществляется реле скорости.

Способы регулирования частоты вращения асинхронного двигателя.

Для асинхронных двигателей с к.з. ротором

1.Изменением сопротивления в цепи статора, применяется в лифтах, недостатки: падает перегрузочная способность и пусковой момент

Читать еще:  Двигатель 406 троит и пропала тяга

2. Изменением напряжения и частоты одновременно: с помощью частотного преобразователя напряжения, способ лучший по регулируемости, требует дорогостоящее оборудование

3 Изменением только величины напряжения: результат такой же, как в первом случае.

4. Переключением с треугольника на звезду (изменением числа пар полюсов)

Для двигателя с фазным ротором: с помощью переключения числа ступеней в реостате в цепи ротора.

Пуск АД с фазным ротором.

Включение в ротор пуско-регулировочных реостатов позволяет ступенчато разогнать двигатель без превышения пускового тока больше 2-3 номинальных.

График –три ступени

Механическая характеристика асинхронного двигателя, её анализ.

1-х.х 2- номинальный режим 3- перегрузочная способность 4 – пуск

1.Механические характеристики строятся по 4 точкам :

1)

2)

3)

4)

где: – синхронная скорость;

– номинальная скорость;

– скольжение критическое

ƛ — перегрузочная способность двигателя;

— момент номинальный;

— частота вращения номинальная;

17. Принцип действия асинхронного двигателя.

На три фазы статорной (первичной) обмотки АД подается переменное напряжение ua=Umsin(wt), ub=Umsin(wt-p/3); uc=Umsin(wt-2p/3), где w=2πf1.

В обмотках начинают протекать фазные токи, также сдвинутыми относительно друг друга на 120 эл.градусов.

Возникает магнитное поле статора, вращающееся с угловой скоростью Ω=2πf1/p.

Магнитное поле статора пересекает проводники обмотки ротора (вторичной обмотки) и индуцирует в ней ЭДС:

Направление E2 определяется по правилу правой руки. Наведенная ЭДС создает в замкнутой обмотке токи .

Индуктивное сопротивление (индуктивность) стержней ротора мало, ток практически совпадает по фазе с ЭДС .

В результате взаимодействия токов ротора с магнитным потоком возникают действующие на проводники ротора механические силы, направление которых определяется по правилу левой руки, и вращающий электромагнитный момент.

При этом для создания момента необходимо, чтобы поток статора пересекал бы проводники ротора, т . е , чтобы статорное поле вращалось со скоростью выше частоты вращения ротора. Эта разница в скорости вращения называется скольжением.

Таким образом, отличительной особенностью АД, давшей ему название, является то, что поле статора и ротор вращаются с разными скоростями, т.е. не синхронно или асинхронно.

Если поменять направление вращения поля статора , то ротор то же начнет вращаться в другую сторону – это реверсирование. Схемно для этого достаточно поменять местами две фазы любые.

18.Способы пуска асинхронных двигателей с к.з. ротором и их характеристика

Во всех способах достигается уменьшение пускового тока..Допускается прямой пуск, если мощность двигателя небольшая или двигатель запускается без нагрузки.

1.Изменением сопротивления в цепи статора, применяется в лифтах, недостатки: падает перегрузочная способность и пусковой момент

2. Изменением напряжения и частоты одновременно: с помощью частотного преобразователя напряжения, способ лучший по регулируемости, требует дорогостоящее оборудование

3 Изменением только величины напряжения: результат такой же, как в первом случае.

4. Переключением с треугольника на звезду (изменением числа пар полюсов)

Электромеханические характеристики асинхронных двигателей

Для вывода уравнения механической характеристики воспользуемся упрощенной схемой замещения двигателя (см. рис. 3.3), где обозначено: – фазное напряжение; – фазный ток статора и приведенный фазный ток ротора соответственно; – ток намагничивания, приблизительно равный току холостого хода двигателя; x1,x2 – индуктивное сопротивление рассеяния обмотки статора и приведенное индуктивное сопротивление обмотки ротора; R1,R2 – активное сопротивление обмотки статора и приведенное сопротивление обмотки ротора; Rμ,xμ – активное и реактивное сопротивление контура намагничивания, которые определяются параметрами взаимоиндукции статорной и роторной цепей. Такую схему замещения можно построить на основании уравнений (3.6), если принять

Читать еще:  Двигатель ваз 21179 технические характеристики

где C1 – модуль комплексного коэффициента, характеризующего соотношение сопротивлений статорной цепи и цепи контура намагничивания.

Рис. 3.3. Схема замещения асинхронного двигателя

В соответствии со схемой замещения можно получить выражение для тока ротора:

Электромагнитная мощность, передаваемая через воздушный зазор, определяется выражением

где M – момент на валу двигателя. Механическая мощность на валу двигателя определяется выражением

Потери мощности в цепи ротора представим в виде

С другой стороны, потери мощности в цепи трехфазного ротора определяются выражением

ΔP=3(I2) 2 R2.

Приравнивая правые части уравнений (3.2) и (3.3), выразим момент двигателя через ток ротора:

Подставляя в последнее выражение I2 из (3.7), получим

Выражение (3.10) является механической характеристикой асинхронного двигателя. Нетрудно заметить, что при s→0 и при s→∞ момент M→0, следовательно, функция момента имеет максимум. Известным способом, из уравнения ∂M/∂s=0 определим значение критического скольжения sк, при котором двигатель развивает максимальный (критический) момент:

Подставляя полученное значение sк в (3.10), получим выражение для критического момента

Здесь знак «+» соответствует двигательному режиму, а знак «–» – генераторному.

Если выражение (3.10) разделить на (3.12), то после преобразований получим уравнение приведенной механической характеристики

Рис. 3.4. Механическая и электромеханическая характеристики асинхронного двигателя

Механическая характеристика, соответствующая (3.13), представлена на рис. 3.4.а. Она имеет несколько характерных точек:

1. s=0,M=0 – точка холостого хода, скорость равна синхронной;

2. s=sн,M=Mн – точка номинального режима, скорость равна номинальной;

3. s=sкд,M=Mкд – точка максимального момента в двигательном режиме;

4. s=−sкг,M=Mкг – точка максимального момента в генераторном режиме;

5. s=1,M=Mп – точка пускового режима.

Существуют асинхронные двигатели, у которых механическая характеристика дважды меняет знак жесткости. Тогда выделяют точки минимального момента для двигательного и генераторного режимов.

Значение пускового момента просто получить из (3.13), принимая s=1:

В ряде случаев, пренебрегая активным сопротивлением обмотки статора, при s

Искусственные характеристики асинхронного двигателя получим из уравнений (3.11) и (3.12), согласно которым sк и Mк изменяются при изменении следующих параметров: фазного напряжения, активного сопротивления цепи ротора, индуктивного и активного сопротивления цепи статора, и, в неявном виде, при изменении частоты питания двигателя. Соответствующее этим изменениям семейство искусственных характеристик в первом квадранте плоскости sMпредставлено на рис. 3.5.

Можно отметить, что согласно (3.11) и (3.12) при изменении активного сопротивления в цепи ротора момент критический не изменяется, а скольжение увеличивается при увеличении сопротивления – рис. 3.5.а, т.е. при введении добавочного сопротивления в цепь ротора жесткость механической характеристики уменьшается.

При изменении фазного напряжения неизменным остается критическое скольжение, критический момент уменьшается при уменьшении напряжения, т.е. жесткость механической характеристики также уменьшается, рис. 3.5.б.

При увеличении индуктивного сопротивления обмотки статора, например, путем введения в его цепь реактора (дросселя) примерно пропорционально уменьшаются и скольжение и критический момент, поэтому жесткость уменьшается, рис. 3.5.в.

При изменении частоты напряжения питания двигателя, во-первых, пропорционально изменяется скорость вращения поля статора, во-вторых, одновременно меняются и скольжение, и критический момент, рис. 3.3.г. Более подробно характеристики двигателя при изменении частоты мы рассмотрим ниже.

Рис. 3.5. Искусственные механические характеристики асинхронного двигателя

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector