2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устойчивость работы двигателя зависит от коэффициента

Устойчивость работы двигателя зависит от коэффициента

7.2.1. Аэродинамические схемы. Продольная балансировка,
устойчивость и управляемость самолета

Рис. 7.15. Балансировка самолета
нормальной схемы

Рис. 7.16. Балансировка самолета схемы
«Утка»

Рис. 7.17. Элевоны на самолете схемы
«бесхвостка»

Рис. 7.18. Балансировка самолетов схемы
«бесхвостка»

Рис. 7.19. Классификация самолетов по аэродинамическим схемам

где&nbsp&nbsp&nbspq&nbsp&nbsp&nbsp-скоростной напор (q=&#961V&#178/2) ;
S&nbsp&nbsp&nbsp-площадь крыла;

bA&nbsp&nbsp&nbsp-длина САХ крыла;
m&nbsp&nbsp&nbsp-безразмерный коэффициент момента, зависящий от компоновки, геометрических параметров и числа M полета самолета.

&nbsp&nbsp&nbspПродольная устойчивость самолета оценивается производной коэффициента продольного (относительно оси 0Z) момента mz по коэффициенту подъемной силы.
&nbsp&nbsp&nbspЕсли для самолета, сбалансированного на угле атаки &#945б (Mz = 0; mz = 0), случайное увеличение угла атаки &#916a и, соответственно, коэффициента подъемной силы &#916CY вызовет появление момента на пикирование (&#916mz &lt 0), то такой самолет устойчив в продольном отношении. На рис. 7.21 такой самолет характеризует кривая 1 зависимости mz = &#131(CY), для которой Рис. 7.21. Измемнение коэффициента продольного момента mz самолета в зависимости от CY (или &#945 )

= xц.м. — xF.

Рис. 7.22. Возмущенное движение
самолета

&#916&#948&#916Yг.о.&#916Mz &#916&#969z&#916&#945&#916Yсам &#916&#175ny.

Рис. 7.23. Изменение запаса продольной
устойчивости самолета по скорости
полета

ФОРУМ ПТИА-АВТО

Актуальная информация о технической экспертизе и сертификации транспортных средств при тюнинге, переоборудовании, модернизации и ремонте, а также о проверке цистерн для перевозки опасных грузов

  • Ссылки
  • Темы без ответов
  • Активные темы
  • Поиск
  • Наша команда

Устойчивость и управляемость автомобиля

  • Версия для печати

Устойчивость и управляемость автомобиля

  • Цитата

Сообщение Алексей » 23 мар 2017, 14:00

Устойчивость — это способность автомобиля двигаться в разнообразных условиях без опрокидывания, заноса и увода. Понятия устойчивость и управляемость тесно переплетаются и их следует рассмотреть совместно. Причинами, вызывающими нарушение устойчивости и управляемости автомобиля, наиболее часто являются воздействующие на автомобиль боковые силы. Особенно высокие требования к устойчивости предъявляются при работе автомобиля на скользких дорогах и при движении с большими скоростями.

Различают:
-продольную;
-поперечную;
-боковую устойчивость автомобиля.

Рис. 1. Силы, действующие на автомобиль при повороте (налево): Р сц—силы сцепления; Pj — сила инерции; ЦМ — центр масс автомобиля; Q а — сила тяжести автомобиля; 2Л , Z„ — силы реакции дороги на опоры колес; Мп — опрокидывающий момент

Под продольной устойчивостью понимают способность автомобиля сохранять устойчивость в продольном направлении (вдоль дороги) при преодолении подъемов и движении на спусках. Чем короче база автомобиля (расстояние между осями), меньше тяговое усилие на ведущих колесах, круче уклон дороги, тем меньше продольная устойчивость. При движении на подъеме нагрузка на задние колеса увеличивается, а на передние уменьшается. Уменьшение давления передних колес на дорогу также уменьшает продольную устойчивость. Однако потеря автомобилем продольной устойчивости (опрокидывание через переднюю или заднюю ось) сравнительно редкое явление и может быть в исключительных случаях — при очень крутом спуске в горных условиях и т. п.

Способность автомобиля сохранять устойчивость в поперечном направлении (поперек дороги) называется поперечной устойчивостью, например при движении по дороге с поперечным уклоном или по косогору. Потеря автомобилем поперечной устойчивости (опрокидывание через левые или правые колеса) тем менее вероятна, чем шире колея (расстояние между колесами) и ниже расположен центр тяжести. Значительное повышение центра тяжести вследствие высоты груза снижает поперечную устойчивость автомобиля.
Технический Регламент Таможенного Союза (ТР ТС 018/2011) предъявляет требования к поперечной статической устойчивости транспортного средства при испытаниях при опрокидывании для транспортных средств категорий M, N, O (применительно к категории М1 – только для транспортных средств категории G только в отношении подпункта 4.2.1, Приложение 3).
ТР ТС 018/2011 определяет, что под углом статической устойчивости αсу понимается угол наклона опорной поверхности α опрокидывающей платформы относительно горизонтальной плоскости, при котором произошел отрыв всех колес одной стороны одиночного транспортного средства максимальной массы от опорной поверхности платформы. Величина угла αсу, полученная в результате технического расчета, должна быть не менее нормативного значения αн = 21° зависящего от коэффициента qs поперечной устойчивости транспортного средства и определяемого расчетным путем по формулам.

Боковой устойчивостью называют способность автомобиля противостоять влиянию боковых сил, вызывающих скольжение задней или передней оси в сторону (боковой занос).

Рис. 2. Сила сцепления колес с дорогой, изображенная в виде круга, используется: а — на создание силы тяги (вектор Р); б — на создание тормозной силы (вектор Рт ); в — на удержание автомобиля от боковых сил (вектор Рб); г — на создание силы тяги и удержание автомобиля от боковых сил (вектор Рs ); д — на создание тормозной силы и удержание автомобиля от боковых сил (вектор Ръ )

Загородное шоссе иногда имеет выпуклый поперечный профиль, часто переходящий на повороте в односторонний уклон, как в сторону центра поворота, так и в сторону от центра поворота. В последнем случае боковая устойчивость автомобиля резко снижается, так как боковая сила, вызывающая занос, и центробежная сила, опрокидывающая автомобиль, направлены в одну сторону от центра поворота.

Известны случаи, когда боковой занос заканчивается опрокидыванием автомобиля. Опрокидывание автомобиля может также произойти от резкого поворота руля на высокой скорости.

Управляемость автомобиля
Управляемость — свойство автомобиля изменять направление движения при изменении положения управляемых колес. Качественно это свойство можно оценивать по степени приближения фактической траектории движения автомобиля к желаемой. В реальных дорожных условиях постоянно возникает необходимость корректирования или изменения направления движения автомобиля. Это достигается воздействиями водителя через рулевое управление на управляемые колеса. Действия водителя, направленные на сохранение или изменение величины и направления скорости движения, а также ориентации продольной оси автомобиля, называются управлением. Управление автомобилем является основной производственной функцией водителя. Для успешного осуществления этой функции автомобиль должен обладать соответствующими свойствами: адекватно реагировать на управляющие воздействия водителя; обеспечивать устойчивое прямолинейное движение и движение на повороте; сохранять нейтральное положение управляемых колес (занимаемое ими при прямолинейном движении) и автоматически возвращаться в него после совершения поворота; исключать колебания управляемых колес. Эти свойства определяют надежность и эффективность управления автомобилем и его устойчивое движение. Свойства управляемости и устойчивости тесно взаимосвязаны и имеют много общих черт. Они зависят от одних и тех же параметров механизмов автомобиля — рулевого управления, подвески, шин, распределения масс между мостами и др. Различие состоит лишь в способах оценки критических параметров движения автомобиля. Параметры, характеризующие свойства устойчивости, определяются без учета управляющих воздействий, а параметры, характеризующие свойства управляемости, — с их учетом. Для оценки управляемости автомобиля предложено множество показателей. Устойчивость управления характеризуется свойством системы водитель — автомобиль выполнять с оговоренной заранее точностью на заданном отрезке пути задаваемые характеристики движения. Характеристики движения определяют зависимости изменения скорости, траектории, курсового угла и угла крена подрессоренной массы в функции времени или пути. В правилах ООН № 79, в ГОСТ Р 31507-2012 и предусмотрены следующие показатели и характеристики управляемости автомобиля и автопоезда [20]:

1) скорость самовозврата рулевого колеса;

2) остаточное значение угла поворота рулевого колеса;

3) заброс угла поворота рулевого колеса;

4) время стабилизации;

5) усилие на рулевом колесе при повороте на месте;

6) усилие на рулевом колесе при движении автомобиля по круговой траектории;

7) характеристика траекторной управляемости при установившемся круговом движении;

8) характеристика заброса угловой скорости автомобиля (или прицепа) над установившимся значением этой скорости при входе в поворот;

9) характеристика обратного заброса угловой скорости прицепа при входе в поворот;

10) характеристика времени 90% -ной реакции автомобиля (или прицепа) при входе в поворот;

11) максимальная скорость выполнения маневра «поворот»;

12) характеристика углов поворота рулевого колеса;

13) характеристика скоростей поворота рулевого колеса;

14) средняя скорость корректирующих поворотов рулевого колеса при прямолинейном движении.

Рекомендуемые предельные значения показателей управляемости даны в правилах ООН № 79, , ГОСТ Р 31507-2012. Согласно этим нормативным документам, показатели управляемости определяют экспериментально. Эти показатели можно также определять посредством математического моделирования.

Рассмотрим физические свойства автомобиля, обеспечивающие его движение по заданной траектории на опорной плоскости дороги. Для обеспечения движения по заданной траектории водитель изменяет углы поворота управляемых колес, поворачивая рулевое колесо в ту или иную сторону на некоторый угол. Однако он не может обеспечить абсолютно точного движения по заданной траектории. Это обусловлено рядом причин. Во-первых, водитель не видит центра масс автомобиля и о совпадении действительной траектории с задаваемой может судить лишь по некоторым косвенным признакам. При управлении направлением движения автомобиля водитель ориентируется на некоторую точку, расположенную на дороге впереди автомобиля, называемую направляющей точкой. Направляющая точка меняет свое положение вместе с перемещением автомобиля. Во-вторых, на автомобиль постоянно действуют различные возмущения, стремящиеся изменить его траекторию. В-третьих, автомобиль обладает значительными инерционными свойствами, а его колеса — упругими свойствами в боковом направлении, поэтому реакция автомобиля на управляющее воздействие имеет определенное запаздывание. В-четвертых, углы бокового увода колес изменяются в широких пределах, так как изменяются продольные, боковые и нормальные реакции дороги на колеса, а также сцепление колес с дорогой. Рассмотрим реакции автомобиля на поворот рулевого колеса. Одной из важнейших характеристик управляемости автомобиля является зависимость кривизны траектории от угла поворота рулевого колеса, называемая характеристикой траекторией управляемости. Зависимость позволяет определить коэффициент чувствительности автомобиля к повороту. Чем больше изменяется кривизна траектории при определенном повороте рулевого колеса, тем выше чувствительность автомобиля к повороту и больше величина реакции автомобиля на управляющее воздействие водителя.

Устойчивость автомобиля вместе с его управляемостью и тормозной динамичностью обусловливают безопасность движения.

Расчёт оценочного параметра продольной устойчивости

7. Расчёт оценочного параметра продольной устойчивости

Под продольной устойчивостью понимается возможность преодоления уклона без пробуксовывания ведущих колес, так как у имеющих низкое расположение центра тяжести современных автомобилей опрокидывание в продольной плоскости маловероятно. Критерием оценки продольной устойчивости служит максимальный уклон подъема, преодолеваемый с постоянной скоростью без пробуксовывания ведущих колес.

Критический угол подъема в значительной мере зависит от значения коэффициента сцепления j.

Расчёт оценочного параметра продольной устойчивости (критического угла подъёма) определяется по формуле:

,(19)

где а — расстояние от центра тяжести автомобиля до его передней оси, м;

L – база автомобиля, м.

Для порожнего автомобиля, для щебеночного сухого покрытия:

Аналогично проводим расчёт для автомобиля в порожнем и груженом состоянии при различных значениях коэффициентов , и результаты расчётов сводим в таблицу 8.

Таблица 8 – Критический угол подъема

Критический угол подьема, ºКоэфициент сцепления шин с дорогой
щеб.покрытие сухое 0,6щеб.покрытие мокрое 0,5
без нагрузки4437
с полной нагрузкой4539

На основании таблицы 8 строится график зависимости критического угла подъёма от коэффициента сцепления шин с дорогой a= f(j) рисунок 10.

Рисунок 10 — График зависимости критического угла подъёма от коэффициента сцепления шин с дорогой

Изменение коэффициента сцепления шин с дорогой способствует и изменению критического угла подъёма. Для асфальтобетонного и цементобетонного покрытий критический угол подъёма минимальный, а при гололёде максимальный. Для порожнего автомобиля критический угол подъёма больше чем для автомобиля в груженом состоянии, однако для укатанного снега и обледенелой дороги критический угол подъёма для автомобиля в груженом состоянии больше чем для автомобиля в порожнем состоянии.

8. Расчёт критической скорости по условию управляемости

Управляемость транспортного средства — способность сохранять или изменять траекторию движения, заданную водителем, позволять управление при наименьших затратах механической и физической энергии. Управляемость требует выполнения следующих требований:

· качение управляемых колес автомобиля при криволинейном движении должно происходить без бокового скольжения;

· углы поворотов управляемых колес должны иметь необходимое соотношение;

· должна быть обеспечена стабилизация управляемых колес;

· должны быть исключены произвольные колебания управляемых колес;

· углы увода передней и задней осей должны иметь определенное соотношение.

Критическая скорость по условиям управляемости — максимальная скорость криволинейного движения без поперечного проскальзывания управляемых колес. При достижении такой критической скорости движения при повороте, управляемые колеса проскальзывают, и увеличение угла поворота управляемых колес не меняет траекторию движения автомобиля. Для каждого угла поворота есть свое критическое значение скорости. При этом с увеличением угла поворота значение критической скорости уменьшается. При незначительном коэффициенте сцепления (сырое загрязненное покрытие, гололед) значение критической скорости существенно снижается. Автомобили, имеющие большую базу по длине, по этому показателю имеют лучшую управляемость.

Критическая скорость по условию управляемости находиться по формуле:

,(20)

где — угол поворота управляемых колёс.

Для грунтового сухого покрытия при =20º:

Vупр ==5.8 м/с

Аналогично проводим расчёт для значений =20º; 40º; для мокрого покрытия, и результаты расчётов сводим в таблицу 9.

Таблица 9 — Критическая скорость по условию управляемости

Критическая скорость по условию управляемости (м/с) при угле поворота управляемых колёс,ºКоэффициент сцепления шин с дорогой
Щебеноч. дорога сухое 0,6Щебеноч. дорога мокрое 0,5
205.84.9
403.452.7

На основании таблицы 10 строится график зависимости критической скорости по условию управляемости от коэффициента сцепления шин с дорогой Vупр = f(j) рисунок 11.

Рисунок 11 — График зависимости критической скорости по условию управляемости от коэффициента сцепления шин с дорогой

При увеличении угла поворота управляемых колёс критическая скорость по условию управляемости падает. Тип покрытия также влияет на критическую скорость по условию управляемости: на асфальтобетонном сухом покрытии критическая скорость больше чем при гололеде.

1. Афанасьев Л.Л., Дьяков А.Б., Иларионов В.А. Конструктивная безопасность автомобилей. – М.: Иашиностроение,1983. – 212 с.

2. Иларионов В.А. Экспертиза дорожно-транспортных происшествий. Учеб. для вузов. — М.: Транспорт, 1989. — 225 с.

3. Коноплянко В.И. Организация и безопасность дорожного движения. М.: Транспорт, 1993. — 183 с.

4. Основы обеспечения безопасности дорожного движения. / Под редакцией В.А. Печкина. – Иркутск: ИрГТУ, 1999. – 138 с.

Устойчивость при центральном сжатии

Прочность при центральном растяжении/сжатии

Согласно СП 16.13330 п. 7.1.1 расчет на прочность элементов из стали с нормативным сопротивлением Ryn ≤ 440 Н/мм2 при центральном растяжении или сжатии силой N следует выполнять по формуле

где N — нагрузка на сжатие/растяжение;

An — площадь поперечного сечения профиля нетто, т.е. с учетом ослабления его отверстиями;

Ry — расчетное сопротивление стали проката (зависит от марки стали см. Таблицу В.5 СП 16.13330);

γс — коэффициент условий работы (см. Таблицу 1 СП 16.13330).

По этой формуле можно вычислить минимально-необходимую площадь сечения профиля и задать профиль. В дальнейшем в проверочных расчетах подбор сечения колонны можно будет сделать только методом подбора сечения, поэтому здесь мы можем задать отправную точку, меньше которой сечение быть не может.

Устойчивость при центральном сжатии

Расчет на устойчивость производится согласно СП 16.13330 п. 7.1.3 по формуле

гдеN — нагрузка на сжатие/растяжение;

A — площадь поперечного сечения профиля брутто, т.е.без учета ослабления его отверстиями;

Ry — расчетное сопротивление стали;

γс — коэффициент условий работы (см. Таблицу 1 СП 16.13330);

φ — коэффициент устойчивости при центральном сжатии.

Как видим эта формула очень напоминает предыдущую, но здесь появляется коэффициентφ, чтобы его вычислить нам вначале потребуется вычислить условную гибкость стержня λ (обозначается с чертой сверху).

где Ry — расчетно сопротивление стали;

E — модуль упругости;

λ — гибкость стержня, вычисляемая по формуле:

где lef — расчетная длина стержня;

i — радиус инерции сечения.

Расчетные длиныlef колонн (стоек) постоянного сечения или отдельных участков ступенчатых колонн согласно СП 16.13330 п. 10.3.1 следует определять по формуле

где l — длина колонны;

μ — коэффициент расчетной длины.

Коэффициенты расчетной длины μ колонн (стоек) постоянного сечения следует определять в зависимости от условий закрепления их концов и вида нагрузки. Для некоторых случаев закрепления концов и вида нагрузки значения μ приведены в следующей таблице:

Радиус инерции сечения можно найти в соответствующем ГОСТ-е на профиль, т.е. предварительно профиль должен быть уже задан и расчет сводится к перебору сечений.

Т.к. радиус инерции в 2-х плоскостях для большинства профилей имеет разные значения на 2-х плоскостей (одинаковые значения имеют только труба и квадратный профиль) и закрепление может быть разным, а следственно и расчетные длины тоже могут быть разные, то расчет на устойчивость необходимо произвести для 2-х плоскостей.

Итак теперь у нас есть все данные чтобы рассчитать условную гибкость.

Если предельная гибкость больше или равна 0,4, то коэффициент устойчивости φ вычисляется по формуле:

значение коэффициента δ следует вычислить по формуле:

коэффициенты α и βсмотрите в таблице

Значения коэффициента φ, вычисленные по этой формуле, следует принимать не более (7,6/ λ 2) при значениях условной гибкости свыше 3,8; 4,4 и 5,8 для типов сечений соответственно а, b и с.

0 0 голоса
Рейтинг статьи
Читать еще:  Давление на рампе двигатель x16xel
Ссылка на основную публикацию