0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и работа бензинового двигателя реферат

Карбюраторный двигатель

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Читать еще:  Ваз 122 двигатель это какой

Подходящие виды регулирования карбюратора:

  • “Винт количества” — функционирование на холостом ходу;
  • “Винт качества” — насыщенность рабочей смеси (как результат, повышение токсичности выхлопных газов) на холостом ходу.

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

  1. Действие клапана и схема холостого хода.
  2. Работа насоса (запаздывание действия, объем и время впрыска бензина).
  3. Размеренность работы, беспрепятственное движение, возврат пружиной и нужная степень открытия дроссельной заслонки.
  4. Действие холодного запуска (закрывание воздушной и степень открывания дроссельной и воздушной заслонок)
  5. Деятельность поплавковой конструкции (необходимое количество топлива в поплавковой камере, непроницаемость клапана).
  6. Пропускная возможность жиклеров.

На работоспособность карбюратора воздействуют:

  • Система регулирования карбюратора.
  • Установка пропуска воздуха (воздушный фильтр, обогрев воздуха).
  • Система подачи топлива (бензонасос, фильтры, заборники).
  • Трубка для слива излишков бензина.
  • Непроницаемость впускного канала, который расположен за карбюратором.
  • Нарушение клапанного устройства.
  • Качество топлива.

Читать реферат по автотранспорту: «Система пуска двигателя» Страница 1

1.1 Назначение, устройство и принцип работы стартера………..стр.……. 1.2 Неисправности, ремонт и Т.О. стартера…………………….. стр.………. 1.3 Технологическая карта по ремонту стартера…………………стр……. .1.4 Новинки…………………………………………………………стр………

Охрана труда при ремонте и Т.О. автомобиля…………… стр.……….

Автомобиль – самое распространенное в современном мире механическое транспортное средство.

На заре автомобилизации непременным атрибутом автомобилиста был «кривой стартер» — изогнутая пусковая рукоятка. Довольно быстро на помощь водителю пришло электричество – раскручивать ДВС стал небольшой, но сильный электромотор, который с тех пор стал основным пожирателем амперов из аккумуляторной батареи. Но главное осталось неизменным: чтобы пустить мотор, его нужно предварительно раскрутить. В настоящее время происходит интенсивное совершенствование конструкций транспортных средств, повышение их надежности и производительности, снижение эксплуатационных затрат, повышение всех видов безопасности. Осуществляется более частое обновление выпускаемых моделей, придание им более высоких потребительских качеств, отвечающих современным требованиям.

Широкое применение находят электрические системы пуска и воздушный, или цилиндровый пуск. Менее распространены пусковые устройства с вспомогательным двигателем внутреннего сгорания. Ручной пуск, пуск пневмостартером и инерционным стартером встречаются сравнительно редко.

Электрические системы пуска с питанием от аккумуляторной батареи удобны в эксплуатации и требуют минимальных затрат на обслуживание; в этом их главные преимущества.

Своевременно проведенный Т.О. и ремонт продлевает срок службы агрегата и автомобиля в целом. 1.Технологическая часть

1.1.Назначение, устройство и принцип работы стартера

На автомобильных, тракторных и транспортных двигателях используются предназначенные только для пуска электрические двигатели постоянного тока с последовательным возбуждением – электростартеры. Крутящий момент с вала электростартера предается на коленчатый вал двигателя посредством шестерни, которая во время пуска вводится в зацепление с зубчатым венцом на маховике двигателя.

Стартеры бывают с дистанционным приводом и с не дистанционным.

Основными частями стартера (рис.1) являются: корпус, якорь с обмотками и коллектором, две крышки, щетки и щеткодержатели.

В связи с потреблением стартером значительной силы тока (до 900 А) обмотки возбуждения и якоря выполнены из толстого провода. Четыре секции обмотки возбуждения включены последовательно обмоткам якоря двумя параллельными ветвями по две обмотки возбуждения в каждой. Щетки для лучшей проводимости сделаны меднографитными. Две щетки соединены с массой, а две – с обмотками возбуждения. Закрепленные в щеткодержателе щетки прижимаются к коллектору пружинами. Для приведения во вращение коленчатого вала двигателя стартер оборудован приводом, соединяющим вал стартера

Исследовательский реферат «Из истории ДВС»

МБОУ Чупалейская ОШ

по теме: «Из истории двигателей внутреннего сгорания»

Выполнил учащийся 7 класса Зайцев Сергей.

Буквально все заполонили.

Там где вековая лежала пыль

Свой след оставил автомобиль.

Человек сейчас не может представить себе жизни без автомобиля – «железного коня», заменившего лошадей, которые верой и правдой служат людям много веков. Свою исследовательскую работу я провожу по истории создания двигателя внутреннего сгорания. Двигатель внутреннего сгорания — это сердце любого автомобиля. Без этой конструктивной детали машину нельзя назвать авто. Именно этот агрегат приводит все в действие, все остальные механизмы, а также электронику. Рывок в истории создания автомобилей, произошел благодаря изобретению двигателя внутреннего сгорания. Это устройство стало реальной движущей силой, дающей скорость.

Идея создания двигателя внутреннего сгорания (ДВС) родилась еще в 17 веке и принадлежала она французскому изобретателю Дени Папену. Но при первом же испытании произошел взрыв. У изобретателя не было средств, чтобы машину сделать заново. Он обратился за помощью к королю, но получил отказ.

В течение долгого времени идея создания двигателя, сжигающего топливо внутри цилиндра, была забыта. Широкое распространение поучила паровая машина.

В середине 19 века французский изобретатель Ленуар применил для зажигания газовой смеси в цилиндре двигателя электрическую искру. В 1860 году Ленуар взял патент на свой двигатель. По конструкции он почти ничем не отличался от паровой машины, но в цилиндр поступал не пар, а смесь светильного газа с воздухом, поджигаемая искрой. Продукты сгорания выпускались в атмосферу.

Двигатель Ленуар работал во многих странах мира. Он обладал бесспорным преимуществом перед паровой машиной: компактностью, лёгкостью, простотой пуска и эксплуатации. Жан Этьен Ленуар признан официально изобретателем двигателя внутреннего сгорания, но его слава длилась лишь несколько лет. Однако КПД1 его двигателя был низким, всего 3 – 5 %.

В истории ДВС начался новый этап – борьба за повышение его КПД.

Вскоре слава перейдет к его немецкому коллеге инженеру Николаусу Отто, с которым Ленуар познакомился а 1860 г. и которому демонстрировал свой двигатель. Н.Отто, заинтересовался изобретением, увидел как двигатель полезен и сколько в нем недостатков, которые, вероятно, можно устранить. Он первоначально создал с Лангеном фирму по выпуску двигателей Ленуара но одновременно работал над собственным вариантом двигателя. День за днем, месяц за месяцем проводил Отто опыты с двигателем. И достиг успеха – его двигатель расходовал втрое меньше топлива (газа), чем машина Ленуара. Именно за экономичность двигатель Отто получил золотую медаль на Парижской выставке в 1867 году.

Его двигатели, премированные на выставке, уже изготовлялись, а Отто все еще работал над своей машиной, изучая каждый момент ее работы. На помощь изобретателю пришел случай. Однажды Отто нечаянно повернул маховик так, что поршень опустился и сжал уже засосанную в цилиндр смесь газа с воздухом. Когда он включил зажигание, поршень поднялся значительно быстрее, энергичнее – маховик сделал втрое больше оборотов, чем обычно. Это было очень важное открытие – горючую смесь надо сжать, прежде чем воспламенить ее. Тут и сделал Отто свое важнейшее изобретение. В 1878 году создал первый двигатель внутреннего сгорания, работающий в работающий в четыре такта. Это был громоздкий и шумный двигатель, но его КПД составлял 16%, в то же время КПД машины Ленуара было в 3 раза меньше (5%). В результате, изобретение Н.Отто вытеснило двигатель Ленуара.

Что это значит 4 такта?

Чтобы двигатель начал работать, поворотом махового колеса или другим способом приводят в движение поршень. Он идет вниз. В это время в верхнюю часть цилиндра всасывается газ и воздух. Это первый такт.

Начинается второй ход поршня. Клапаны, впускавшие газ и воздух, закрываются, поршень, поднимаясь, сжимает горючую смесь. Это второй такт.

Сжатая смесь поджигается электрической искрой. Производится взрыв. Температура в цилиндре резко поднимается (свыше 2000 градусов), и нагретые при этом взрыве газы стремятся расшириться. Они с силой толкают поршень вниз. Это третий такт, во время которого и совершается полезная работа двигателя – поршень поворачивает вал с маховым колесом.

Поршень идет вверх. Открывается выпускной клапан, и отработанные газы выбрасываются из цилиндра. Это четвертый такт.

Затем все повторяется сначала, только уже не надо посторонней силой пускать в ход поршень.

Новый двигатель Отто работал так хорошо, что начисто отменил все прежние двигатели внутреннего сгорания, в том числе и первый двигатель самого Отто. КПД составил 22%. Этот двигатель нашел применение во многих странах. Он проложил дорогу новым ДВС. Но двигатель Отто работал только на газе.

Инженер Г. Даймлер построил двигатель, работавший на бензине. В 1885 году он получил патент на применение бензинового двигателя на транспорте и построил первый автомобиль (скорость – 18 км/ч.) Так ДВС проник на транспорт.

Первый самоходный экипаж с ДВС Карл Бенц, Готлиб Даймлера

Борьба за повышение КПД двигателей внутреннего сгорания продолжалась.

В 1892 году Рудольф Дизель – немецкий инженер, получил патент на двигатель, в котором рабочий процесс отличался рядом особенностей: в цилиндре сжимается только воздух, причем очень сильно; от сильного сжатия температура воздуха возрастает настолько, что при впрыскивании в цилиндр топлива оно воспламеняется; образовавшиеся газы производят рабочий ход поршня. Построенный в 1897 году двигатель работал на керосине и имел высокий КПД – 25%. Его стали называть дизель-мотором или просто дизелем.

Второй родиной этого двигателя стала Россия. Крупный нефтепромышленник Нобель купил у Дизеля право на постройку этого двигателя. В 1899 году инженеры в Петербурге построили двигатель, работавший на сырой нефти. Его КПД был выше чем у двигателей работавших на керосине. Спрос на дизель-моторы возрастал…

Читать еще:  Хендай солярис как завести двигатель

С момента своего появления ДВС совершили триумфальное шествие по всему миру. Они проникли на транспорт. В 1903 году по Волге отправился в плавание первый в мире теплоход «Вандал». На нем были установлены три нефтяных двигателя мощностью по 120 лошадиных сил каждый. Это был первый в мире теплоход. Так стали именовать те суда, которые приводятся в движение не паровой машиной, а двигателем внутреннего сгорания — дизелем. Двигатель «Вандала» и других теплоходов того времени совершали рабочий процесс за четыре такта: всасывание, сжатие, рабочий ход и выхлоп. «Вандал» — это «дедушка» современных теплоходов.

.

Первый тепловоз отправился в испытательный пробег 6 ноября 1924 года. (КПД — 29%)

КПД бензинового двигателя, в настоящее время, находится в пределах от 20 до 25 %.. КПД дизельного двигателя – 40 – 50%

Применение ДВС в технике чрезвычайно разнообразно: карбюраторные ДВС установлены на автомобилях, вертолетах, тракторах. Дизели широко применяют на транспорте – в тепловозах, теплоходах, автомобилях. Кроме четырехтактных двигателей внутреннего сгорания, нашли применение двухтактные ДВС, например, на мотоциклах, скутерах.

А.Ивич. Приключения изобретений. Издательство «Детская литература» Москва 1966 г. (263 стр)

М.Н.Алексеева (составитель) Физика-юным. Москва «Просвещение» 1980 г. (160 стр)

КПД – коэффициэнт полезного действия

МАХОВИК или маховое колесо, тяжелое колесо на валу двигателя или другой машины, выравнивающее ее ход.

Реферат: Конструкция и работа системы питания бензинового двигателя

1. Работа двигателей на рабочей смеси

2. Система питания карбюраторного двигателя

3. Конструкция и работа системы питания карбюраторного двигателя

4. Система питания бензинового двигателя с впрыском топлива

5. Техника безопасности

Список использованной литературы

Системой питания называется совокупность приборов и устройств, обеспечивающих подачу топлива и воздуха к цилиндрам двигателя и отвод от цилиндров отработавших газов.

Система питания служит для приготовления горючей смеси, необходимой для работы двигателя.

Горючей называется смесь топлива и воздуха в определенных пропорциях.

1.Работа двигателей на рабочей смеси

Рабочей называется смесь топлива, воздуха и отработавших газов, образующаяся в цилиндрах при работе двигателя.

В зависимости от места и способа приготовления горючей смеси двигатели автомобилей могут иметь различные системы питания (рис. 1).

Рис. 1. Типы систем питания двигателей, классифицированных по различным признакам

Система питания с приготовлением горючей смеси в специальном приборе — карбюраторе — применяется в бензиновых двигателях, которые называются карбюраторными. Для приготовления горючей смеси в карбюраторе используется пульверизационный способ. При этом способе капельки бензина, попадая из распылителя в движущийся со скоростью 50. 150 м/с поток воздуха в смесительной камере карбюратора, размельчаются, испаряются и, смешиваясь с воздухом, образуют горючую смесь. Полученная горючая смесь поступает в цилиндры двигателя.

Система питания с приготовлением горючей смеси во впускном трубопроводе также применяется в бензиновых двигателях. Для приготовления горючей смеси в быстро движущийся поток воздуха во впускном трубопроводе под давлением из форсунок впрыскивается мелкораспыленное топливо. Топливо перемешивается с воздухом, и образованная горючая смесь поступает в цилиндры двигателя.

Система питания с приготовлением горючей смеси непосредственно в цилиндрах двигателя применяется как в дизелях, так и в бензиновых двигателях. Приготовление горючей смеси происходит внутри цилиндров двигателя путем впрыска из форсунок под давлением мелкораспыленного топлива в сжимаемый в цилиндрах воздух. При этом, если в дизелях происходит самовоспламенение образованной рабочей смеси от сжатия, то в бензиновых двигателях рабочая смесь в цилиндрах воспламеняется принудительно от свечей зажигания. Система питания с впрыском топлива обеспечивает лучшее наполнение цилиндров двигателя горючей смесью и лучшую их очистку от отработавших газов. При этом впрыск топлива позволяет повысить степень сжатия и максимальную мощность у бензиновых двигателей, уменьшить расход топлива и снизить токсичность отработавших газов. Однако системы питания с впрыском топлива сложнее по конструкции и по обслуживанию в эксплуатации.

2. Система питания карбюраторного двигателя

Топливо. Для бензиновых двигателей автомобилей топливом является бензин различных марок — А-80, АИ-93, АИ-95, АИ-98, где буква А означает автомобильный; И — метод определения октанового числа бензина (исследовательский); 93, 95, 98 — октановое число, характеризующее стойкость бензина против детонации. Чем выше октановое число, тем выше может быть степень сжатия двигателя.

Детонация — процесс сгорания рабочей смеси с взрывом ее отдельных объемов в цилиндрах двигателя со скоростью распространения пламени до 3000 м/с, в то время как при нормальном сгорании рабочей смеси скорость распространения пламени 30. 40 м/с. Сгорание при детонации приобретает взрывной характер. Ударная волна распространяется в цилиндрах двигателя со сверхзвуковой скоростью. Резко повышается давление газов и ухудшаются показатели двигателя по мощности и экономичности. Появляются звонкие стуки в двигателе, черный дым из глушителя, и происходит перегрев двигателя. При этом быстро изнашиваются детали кривошипно-шатунного механизма и обгорают головки клапанов.

Для повышения антидетонационных свойств в бензины добавляют антидетонатор ТЭС — тетраэтилсвинец. Такие бензины называются этилированными, они имеют отличительные обозначение и окраску — АИ-93-этил (оранжево-красного цвета) и АИ-98-этил (синего цвета). Этилированные бензины очень ядовиты, и при обращении с ними необходимо соблюдать осторожность — не применять для мытья рук и деталей, не засасывать ртом при переливании и т. п.

Использование этилированных бензинов для автомобилей в крупных городах запрещено.

3. Конструкция и работа системы питания карбюраторного двигателя

Система питания двигателя автомобиля состоит из топливного бака, топливного насоса, воздушного фильтра, карбюратора, топливопроводов, впускного и выпускного трубопроводов, трубы глушителей, основного и дополнительного глушителей (рис. 2).

Топливо из бака 6 подается насосом 7 по топливопроводам 5 в карбюратор 4. Через воздушный фильтр 1 в карбюратор поступает воздух. Приготовленная в карбюраторе горючая смесь подается в цилиндры двигателя по впускному трубопроводу 2. Отработавшие газы отводятся из цилиндров двигателя в окружающую среду через выпускной трубопровод 3, трубу 8 глушителей, основной 10 и дополнительный 9 глушители.

—>ЧИТАТЬ ПОЛНОСТЬЮ «

  • 1
  • 2
  • 3
  • 4
  • »
  • Бензиновый двигатель: принцип работы, устройство и фото

    Устройство

    Бензиновые моторы относят к классу двигателей внутреннего сгорания. Внутри камер сгорания предварительно сжатая топливно-воздушная смесь воспламеняется посредством искры. Для управления мощностью мотора используется дроссельная заслонка. Она позволяет регулировать количество воздуха, попадающего в камеру сгорания.

    Давайте подробнее познакомимся с устройством всех основных узлов любого ДВС. Каждый силовой агрегат состоит из блока цилиндров, кривошипно-шатунного механизма, деталей цилиндропоршневой группы, механизма газораспределения, системы смазки и охлаждения, системы питания. Также двигатель не сможет работать без электрического оборудования. Все эти системы и узлы взаимодействуют между собой в процессе работы двигателя.

    Принцип работы четырёхтактного двигателя внутреннего сгорания

    В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу. Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:

    Устройство двигателя внутреннего сгорания

    Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.

    Давайте ещё раз повторим определения, а затем посмотрим это видео.

    Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом, в данном случае, двигателя внутреннего сгорания.

    1. Такт первый – ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
    2. Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
    3. Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
    4. Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

    Рекомендуем: Можно ли смешивать моторные масла разных производителей?

    Читать еще:  Датчик температуры двигателя ваз 21140

    И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.

    Блок цилиндров ДВС

    Блок цилиндров – это основная деталь любого мотора. Это чугунная или алюминиевая литая цельная деталь. В блоке имеются цилиндры и масса различных отверстий с резьбой для монтажа навесного и другого оборудования. Элемент имеет обработанные механически плоскости для монтажа ГБЦ и других деталей.

    Конструкция блока сильно зависит от количества цилиндров, расположения камер сгорания, метода охлаждения. В одном блоке может объединяться от 1 до 16 цилиндров. При этом блоки, где количество цилиндров нечетное, встречаются реже. Из тех моделей, что выпускаются сейчас, можно встретить 3-цилиндровые ДВС. Большинство же блоков имеют 2, 4, 8, 12 и иногда даже 16 цилиндров.

    Двигатели с количеством цилиндров от 1 до 4 отличаются расположением камер сгорания в ряд. Они так и называются – рядные двигатели. Если цилиндров больше, то они располагаются в блоке в два ряда под определенным углом. Это позволило уменьшить габаритные размеры, но технология изготовления таких блоков сложнее.

    Можно выделить еще один вид блоков. В них камеры сгорания расположены в два ряда под углом в 180 градусов. Это так называемые оппозитные моторы. Принцип работы бензинового двигателя такого типа ничем не отличается от традиционных ДВС. Их чаще можно встретить на мототехнике, но существуют и автомобили, оснащенные ими.

    Что касается охлаждения, то можно выделить два типа систем. Это жидкостное и воздушное охлаждение. От того, какая выбрана система охлаждения, зависят конструктивные особенности блока цилиндров. Блок с системой воздушного охлаждения устроен гораздо проще, по сравнению с таким же на водяном охлаждении. Камеры сгорания в данном случае к блоку не относятся.

    Блок на жидкостном охлаждении устроен гораздо сложнее. В конструкцию уже входят камеры сгорания. Поверх металлического блока цилиндров проложена рубашка охлаждения, внутри которой принудительно циркулирует охлаждающая жидкость, которая служит для отвода тепла от деталей. Блок и рубашка охлаждения в ДВС является одним целым.

    Сверху блок цилиндров накрыт головкой. Она образует закрытое пространство, где и осуществляется процесс горения топлива. ГБЦ может иметь простую конструкцию или же более сложную.

    Кривошипно-шатунный механизм

    Данный узел, который также является неотъемлемой частью двигателя, необходим для преобразования возвратно-поступательных движений поршней во вращательные движения коленчатого вала. Главная деталь здесь – это коленчатый вал. Он подвижно соединен с блоком двигателя. За счет этой подвижности обеспечивается возможность вращения вала вокруг своей оси.

    К одному из концов коленчатого вала крепится маховик. Он необходим для того, чтобы передавать крутящий момент от коленчатого вала на трансмиссию. Принцип работы четырехтактного бензинового двигателя предусматривает два оборота коленчатого вала на одну половину оборота с полезной работой. Остальные такты требуют обратных действий – это и обеспечивает маховик. Так как он имеет достаточно большой вес, то при вращении за счет кинетической энергии он поворачивает коленчатый вал на этапах подготовительных тактов.

    На маховике по окружности имеется специальный зубчатый венец. При помощи данного узла можно запускать двигатель стартером. С другой стороны коленчатого вала имеется шестеренка масляного насоса и шестерня ГРМ. Также с обратной стороны имеется фланец, на который крепится шкив.

    Узел включает в себя и шатуны. Они позволяют передать усилие от поршней к коленчатому валу и наоборот. Шатуны также подвижно закреплены на коленчатом валу. Прямого контакта между поверхностями блока цилиндров, коленчатым валом и шатунами нет – эти детали работают через подшипники скольжения.

    Цилиндропоршневая часть

    Данная часть представляет собой цилиндры или гильзы, поршни, поршневые кольца и пальцы. Именно на этих деталях основан принцип работы бензинового двигателя. Здесь выполняется вся работа. В цилиндрах сгорает топливо, а выделенная энергия преобразовывается во вращение коленчатого вала. Горение происходит внутри цилиндров, которые с одной стороны закрыты ГБЦ, а с другой – поршнями. Поршень свободно перемещается внутри цилиндра.

    Принцип работы бензинового двигателя основывается не только на сгорании топлива, но и на сжатии топливовоздушной смеси. Чтобы обеспечивать это, нужна герметичность. Она обеспечивается поршневыми кольцами. Последние предотвращают попадание топливной смеси и продуктов горения между поршнем и цилиндром.

    ГРМ двухтактного двигателя

    Если рассмотреть принцип работы двухтактного бензинового двигателя, то в нем механизм ГРМ как таковой отсутствует. Здесь впрыск топливной смеси и выпуск отработанных газов выполняется посредством технологических окон в цилиндре. Различают три окна – впускное окно, выпускное, перепускное.

    Когда поршень двигается, то он тем самым открывает или закрывает то или иное окно. Цилиндр наполняется топливом, также отводятся газы. При таком механизме газораспределения не нужно никаких дополнительных деталей. Поэтому головка блока цилиндров в двухтактных моторах простая. Ее функции заключаются лишь в обеспечении максимальной герметичности.

    Виды бензиновых двигателей

    В рекламных проспектах на новые модели автомобилей указывается много разных данных. Среди них описывается тип силового агрегата. Если в первых автомобилях достаточно было указать тип используемого топлива (дизель или бензин), то на сегодняшний день одних бензиновых модификаций существует большое разнообразие.

    Вот несколько категорий, по которым классифицируются такие силовые агрегаты:

    1. Число цилиндров. В классическом исполнении машина оснащается мотором с четырьмя цилиндрами. Более производительные, а вместе с тем и более прожорливые, имеют 6, 8 или даже 18 цилиндров. Однако существуют и агрегаты с небольшим количеством котелков. Например, Toyota Aygo оснащается 1.0-литровым бензиновым ДВС на 3 цилиндра. Подобный агрегат получил и Peugeot 107. Некоторые малолитражки могут оснащаться даже двухцилиндровым бензиновым агрегатом.
    2. Строение блока цилиндров. В классическом исполнении (4-цилиндровая модификация) мотор имеет рядное расположение цилиндров. В основном они установлены вертикально, но иногда встречаются и наклоненные аналоги. Следующая конструкция, завоевавшая доверие у многих автомобилистов, это агрегат с V-образным расположением цилиндров. В такой модификации всегда парное количество котелков, которые расположены под определенным углом друг относительно друга. Часто такую конструкцию используют для экономии места в подкапотном пространстве, особенно если это габаритный мотор (например, насчитывает 8 цилиндров, но места занимает, как 4-цилиндровый аналог). Некоторые производители устанавливают в свои автомобили W-образный силовой агрегат. Эта модификация отличается от V-образного аналога дополнительным развалом блока цилиндров, который в разрезе имеет форму буквы W. Еще одна разновидность моторов, которые используются в современных автомобилях, это оппозитник или боксер. Подробно о том, как устроен такой движок и как он работает, рассказывается в другом обзоре. Пример моделей с подобным агрегатом – Subaru Forester, Subaru WRX, Porsche Cayman и т.д.
    3. Система подачи топлива. По этому критерию моторы делятся на две категории: карбюраторные и инжекторные. В первом случае бензин закачивается в топливную камеру механизма, из которой через жиклер всасывается во впускной коллектор. Инжектор это система, которая принудительным образом распыляет бензин в полость, в которой установлена форсунка. Подробно работа этого устройства описывается здесь. Инжекторы бывают нескольких видов, которые отличаются особенностями расположения форсунок. В более дорогих автомобилях распылители устанавливаются непосредственно в головке блока цилиндров.
    4. Вид смазочной системы. Каждый ДВС работает в условиях повышенных нагрузок, из-за чего он нуждается в качественной смазке. Существует модификация с мокрым (классический вид, в котором масло находится в поддоне) или сухим (для хранения масла установлен отдельный резервуар) картером. Подробно об этих разновидностях рассказывается отдельно.
    5. Тип охлаждения. Большинство современных моторов для автомобилей имеет водяное охлаждение. В классическом исполнении такая система будет состоять из радиатора, патрубков и охлаждающей рубашки вокруг блока цилиндров. Действие этой системы описано здесь. Некоторые модификации силовых агрегатов, работающих на бензине, могут иметь и воздушное охлаждение.
    6. Тип циклов. Всего существует две модификации: двухтактного или четырехтактного типа. Принцип действия двухтактной модификации описан в другой статье. Немного позже рассмотрим, как работает 4-тактная модель.
    7. Тип поступления воздуха. Во впускной тракт воздух для приготовления воздушно-топливной смеси может поступать двумя способами. Большинство классических моделей ДВС имеют атмосферный тип впускной системы. В нем воздух поступает за счет разрежения, которое создает поршень, двигаясь к нижней мертвой точке. В зависимости от системы впрыска в этот поток распыляется порция бензина либо перед впускным клапаном, либо немного раньше, но в тракте, соответствующем конкретному цилиндру. В моновпрыске подобно карбюраторной модификации на впускном коллекторе устанавливается одна форсунка, а ВТС затем всасывается конкретным цилиндром. Подробно о работе системы впуска рассказывается здесь. В более дорогих агрегатах бензин может распыляться непосредственно в самом цилиндре. Помимо атмосферного мотора существует также турбированная версия. В ней воздух для приготовления ВТС нагнетается при помощи специальной турбины. Она может работать за счет движения выхлопных газов или при помощи электрического мотора.
    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    Adblock
    detector