8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и работа двухтактного дизельного двигателя

РАБОЧИЕ ЦИКЛЫ ДИЗЕЛЕЙ

Поршень в цилиндре дизеля 10Д100 при частоте вращения коленчатого вала, равной 850 об/мин, делает за минуту 1700, а за секунду — больше 28 перемещений сверху вниз и снизу вверх. Примерно тридцатая доля секунды дана поршню на один ход. Если подсчитать путь, пройденный поршнем, то он может оказаться равным 200 км за 8 ч работы, а ведь тепловоз может находиться в движении почти 24 ч в сутки.
Если какие-либо явления последовательно и периодически повторяются, следуя друг за другом, это называется циклом. Например, цикл составляет смена времен года, смена дня и ночи и т. д. Аналогично этому в тепловых машинах также происходят циклические (круговые) процессы.
Проследив за процессами, происходящими в цилиндре работающего дизеля, можно заметить, что работа поршня слагается из чередующихся процессов: 1) впуск воздуха; 2) сжатие воздуха; 3) горение впрыснутого топлива, образование газообразных продуктов горения и их расширение; 4) выпуск отработавших газов. Комплекс последовательных процессов, периодически повторяющихся в каждом рабочем цилиндре, называется рабочим циклом двигателя.

Рис. 18 Схематичное изображение рабочих ходов в дизелях

Как бы ни были разнообразны конструкции дизелей, но упомянутые процессы имеют место в каждом из них. Разница только в том, что в одних дизелях весь рабочий цикл совершается за один оборот коленчатого вала, а в других — за два оборота, т. е. соответственно за два хода (такта) поршня (эти двигатели принято называть двухтактными) и за четыре хода (такта) поршня (эти двигатели принято называть четырехтактными). Таким образом, такт — это часть рабочего цикла.
Рабочим, так сказать, «мускульным» тактом во всех двигателях внутреннего сгорания является расширение продуктов сгорания топлива в цилиндре. Именно во время этого такта развивается сила, перемещающая поршень. Поэтому такт расширения называют рабочим ходом поршня. Этот такт является движущим началом остальных нерабочих тактов, совершающихся за счет накопленной при рабочем такте энергии. На каждый рабочий ход приходится в двухтактном двигателе один нерабочий ход, а в четырехтактном — три нерабочих хода (рис. 18). На тепловозах применяются и конкурируют между собой двухтактные и четырехтактные дизели.

Рис. 19. Схема работы четырехтактного дизеля

Четырехтактный дизель. Первый такт — впуск воздуха (рис. 19). При движении поршня от верхней мертвой точки к нижней (допустим, что поршень движется благодаря вращению коленчатого вала по инерции) под действием специального механизма открыт впускной клапан, давая, таким образом, доступ воздуху в цилиндр; выпускной клапан закрыт.
Второй такт — сжатие. Пройдя нижнюю мертвую точку, поршень, приводимый в движение коленчатым валом, начинает перемещаться вверх: объем цилиндра уменьшается. Так как оба клапана — впускной и выпускной — в это время закрыты, то поршень сжимает воздух, заполнивший цилиндр. Когда поршень находится около в. м. т., воздух оказывается сжатым до давления 2,94 — 4,9 МПа (30—50 кгс/см2). Этот такт поэтому и называется тактом сжатия. От такого сжатия температура воздуха в цилиндре дизеля повышается до 500 — 600°С.
Третий такт — расширение газа. При подходе поршня к верхней мертвой точке в цилиндр через форсунку впрыскивается порция топлива. Давление впрыска топлива (не путать с давлением газов!), доходящее до 98 МПа (1000 кгс/см2), создается топливным насосом (на схеме не показан). В цилиндре происходит перемешивание топлива со сжатым воздухом и самовоспламенение. Процесс горения топлива сопровождается ростом температуры и давления газов. При сгорании топлива температура газов в цилиндре достигает 1500 — 1800° С, а давление повышается (в зависимости от конструкции и мощности дизеля) до 4,9 — 11,7 МПа (50— 120 кгс/см2). Под действием высокого давления газов поршень перемещается к нижней мертвой точке, а продукты сгорания топлива расширяются. Как уже указывалось, этот третий такт является рабочим ходом поршня потому, что только при этом ходе поршень совершает полезную работу. Температура и давление газов после расширения значительно понижаются. В третьем такте так же, как и во втором, впускной и выпускной клапаны закрыты.
Четвертый такт — выпуск газов. В конце третьего такта открывается выпускной клапан и начинается выход отработавших газов в коллектор. При обратном движении поршня вверх объем цилиндра уменьшается, газы поршнем выталкиваются через открытый выпускной клапан. Процесс выпуска отработавших газов, т. е. очистки цилиндра для последующего впуска воздуха, заканчивается несколько позже того, как поршень пройдет верхнюю мертвую точку. Для чего это делается, мы скоро узнаем, а пока отметим, что четвертый такт является замыкающим в цикле; после него все такты повторяются сначала: 1) впуск, 2) сжатие, 3) расширение, 4) выпуск и т. д. Итак, в четырехтактном дизеле рабочий цикл осуществляется за четыре хода (такта) поршня.
Хорошо ли, что в четырехтактном дизеле только один из тактов — расширение — является рабочим, а три— подготовительными? И да, и нет. Хорошо потому, что цилиндры двигателя тщательно очищаются от отработавших газов. Плохо потому, что на один рабочий такт приходятся три вспомогательных такта, во время которых двигатель не производит работу. Следовательно, в четырехтактных дизелях около 3/4 времени цикла затрачивается на вспомогательные операции — впуск, сжатие и выпуск. Нельзя ли сократить это время, уменьшить продолжительность рабочего цикла?

Двухтактный дизель. Изучая процессы, происходящие в работающем дизеле, конструкторы пришли к выводу, что рабочий цикл дизеля можно осуществить и за два хода поршня: при воспламенении и сгорании топлива поршень совершает один ход сверху вниз (рис. 20, а), следующий, обратный ход поршня используется для сжатия новой порции воздуха (рис. 20, б). Для остальных двух процессов отводится гораздо меньше времени, чем раньше: очистка цилиндра и заполнение его воздухом происходят в период, когда поршень находится вблизи н. м. т.

Рис. 20. Схема работы двухтактного двигателя

Двухтактный дизель так же, как и четырехтактный, имеет цилиндр, поршень, шатунно-кривошипный механизм. У двухтактных дизелей типа Д100 нет клапанов: впуск и выпуск осуществляются не через отверстия в крышке цилиндра, открываемые клапанами, а через специальные окна (щели) в стенке цилиндра (см. рис. 20, б), которые закрываются и открываются самим поршнем во время его перемещения в цилиндре. Поршень двухтактного дизеля сам выполняет функции клапанов. Но, как бы в награду за этот труд, поршень в двухтактном дизеле практически не производит работы по выталкиванию отработавших газов и созданию разрежения в цилиндре двигателя внутреннего сгорания.
Вот как это достигается. В конце рабочего хода, когда поршень приближается к н.м.т., он сначала открывает выпускные (в нашем случае более высокие) окна, через которые и устремляются отработавшие газы в выпускной коллектор; давление в цилиндре начинает падать. Еще через мгновенье поршень, продолжая двигаться вниз, открывает более низкие продувочные окна, сквозь которые в цилиндр врывается струя сжатого воздуха, подаваемого воздуходувкой. Сжатый воздух выталкивает газы через выпускные окна в атмосферу и заполняет объем цилиндра, частично проходя через него «транзитом». Выпуск газов происходит в тот очень короткий промежуток времени, пока окна не перекроет поршень при своем движении вверх от нижней мертвой точки. При этом закрываются продувочные окна, а затем выпускные. После того как поршень перекроет окна, начнется процесс сжатия воздуха.
Процесс очистки цилиндра от отработавших газов и наполнения его чистым воздухом получил название продувки.

РАБОЧИЕ ЦИКЛЫ ДИЗЕЛЕЙ

Поршень в цилиндре дизеля 10Д100 при частоте вращения коленчатого вала, равной 850 об/мин, делает за минуту 1700, а за секунду — больше 28 перемещений сверху вниз и снизу вверх. Примерно тридцатая доля секунды дана поршню на один ход. Если подсчитать путь, пройденный поршнем, то он может оказаться равным 200 км за 8 ч работы, а ведь тепловоз может находиться в движении почти 24 ч в сутки.
Если какие-либо явления последовательно и периодически повторяются, следуя друг за другом, это называется циклом. Например, цикл составляет смена времен года, смена дня и ночи и т. д. Аналогично этому в тепловых машинах также происходят циклические (круговые) процессы.
Проследив за процессами, происходящими в цилиндре работающего дизеля, можно заметить, что работа поршня слагается из чередующихся процессов: 1) впуск воздуха; 2) сжатие воздуха; 3) горение впрыснутого топлива, образование газообразных продуктов горения и их расширение; 4) выпуск отработавших газов. Комплекс последовательных процессов, периодически повторяющихся в каждом рабочем цилиндре, называется рабочим циклом двигателя.

Рис. 18 Схематичное изображение рабочих ходов в дизелях

Как бы ни были разнообразны конструкции дизелей, но упомянутые процессы имеют место в каждом из них. Разница только в том, что в одних дизелях весь рабочий цикл совершается за один оборот коленчатого вала, а в других — за два оборота, т. е. соответственно за два хода (такта) поршня (эти двигатели принято называть двухтактными) и за четыре хода (такта) поршня (эти двигатели принято называть четырехтактными). Таким образом, такт — это часть рабочего цикла.
Рабочим, так сказать, «мускульным» тактом во всех двигателях внутреннего сгорания является расширение продуктов сгорания топлива в цилиндре. Именно во время этого такта развивается сила, перемещающая поршень. Поэтому такт расширения называют рабочим ходом поршня. Этот такт является движущим началом остальных нерабочих тактов, совершающихся за счет накопленной при рабочем такте энергии. На каждый рабочий ход приходится в двухтактном двигателе один нерабочий ход, а в четырехтактном — три нерабочих хода (рис. 18). На тепловозах применяются и конкурируют между собой двухтактные и четырехтактные дизели.

Рис. 19. Схема работы четырехтактного дизеля

Четырехтактный дизель. Первый такт — впуск воздуха (рис. 19). При движении поршня от верхней мертвой точки к нижней (допустим, что поршень движется благодаря вращению коленчатого вала по инерции) под действием специального механизма открыт впускной клапан, давая, таким образом, доступ воздуху в цилиндр; выпускной клапан закрыт.
Второй такт — сжатие. Пройдя нижнюю мертвую точку, поршень, приводимый в движение коленчатым валом, начинает перемещаться вверх: объем цилиндра уменьшается. Так как оба клапана — впускной и выпускной — в это время закрыты, то поршень сжимает воздух, заполнивший цилиндр. Когда поршень находится около в. м. т., воздух оказывается сжатым до давления 2,94 — 4,9 МПа (30—50 кгс/см2). Этот такт поэтому и называется тактом сжатия. От такого сжатия температура воздуха в цилиндре дизеля повышается до 500 — 600°С.
Третий такт — расширение газа. При подходе поршня к верхней мертвой точке в цилиндр через форсунку впрыскивается порция топлива. Давление впрыска топлива (не путать с давлением газов!), доходящее до 98 МПа (1000 кгс/см2), создается топливным насосом (на схеме не показан). В цилиндре происходит перемешивание топлива со сжатым воздухом и самовоспламенение. Процесс горения топлива сопровождается ростом температуры и давления газов. При сгорании топлива температура газов в цилиндре достигает 1500 — 1800° С, а давление повышается (в зависимости от конструкции и мощности дизеля) до 4,9 — 11,7 МПа (50— 120 кгс/см2). Под действием высокого давления газов поршень перемещается к нижней мертвой точке, а продукты сгорания топлива расширяются. Как уже указывалось, этот третий такт является рабочим ходом поршня потому, что только при этом ходе поршень совершает полезную работу. Температура и давление газов после расширения значительно понижаются. В третьем такте так же, как и во втором, впускной и выпускной клапаны закрыты.
Четвертый такт — выпуск газов. В конце третьего такта открывается выпускной клапан и начинается выход отработавших газов в коллектор. При обратном движении поршня вверх объем цилиндра уменьшается, газы поршнем выталкиваются через открытый выпускной клапан. Процесс выпуска отработавших газов, т. е. очистки цилиндра для последующего впуска воздуха, заканчивается несколько позже того, как поршень пройдет верхнюю мертвую точку. Для чего это делается, мы скоро узнаем, а пока отметим, что четвертый такт является замыкающим в цикле; после него все такты повторяются сначала: 1) впуск, 2) сжатие, 3) расширение, 4) выпуск и т. д. Итак, в четырехтактном дизеле рабочий цикл осуществляется за четыре хода (такта) поршня.
Хорошо ли, что в четырехтактном дизеле только один из тактов — расширение — является рабочим, а три— подготовительными? И да, и нет. Хорошо потому, что цилиндры двигателя тщательно очищаются от отработавших газов. Плохо потому, что на один рабочий такт приходятся три вспомогательных такта, во время которых двигатель не производит работу. Следовательно, в четырехтактных дизелях около 3/4 времени цикла затрачивается на вспомогательные операции — впуск, сжатие и выпуск. Нельзя ли сократить это время, уменьшить продолжительность рабочего цикла?

Читать еще:  Ваз когда двигатель прогретый плохо заводится

Двухтактный дизель. Изучая процессы, происходящие в работающем дизеле, конструкторы пришли к выводу, что рабочий цикл дизеля можно осуществить и за два хода поршня: при воспламенении и сгорании топлива поршень совершает один ход сверху вниз (рис. 20, а), следующий, обратный ход поршня используется для сжатия новой порции воздуха (рис. 20, б). Для остальных двух процессов отводится гораздо меньше времени, чем раньше: очистка цилиндра и заполнение его воздухом происходят в период, когда поршень находится вблизи н. м. т.

Рис. 20. Схема работы двухтактного двигателя

Двухтактный дизель так же, как и четырехтактный, имеет цилиндр, поршень, шатунно-кривошипный механизм. У двухтактных дизелей типа Д100 нет клапанов: впуск и выпуск осуществляются не через отверстия в крышке цилиндра, открываемые клапанами, а через специальные окна (щели) в стенке цилиндра (см. рис. 20, б), которые закрываются и открываются самим поршнем во время его перемещения в цилиндре. Поршень двухтактного дизеля сам выполняет функции клапанов. Но, как бы в награду за этот труд, поршень в двухтактном дизеле практически не производит работы по выталкиванию отработавших газов и созданию разрежения в цилиндре двигателя внутреннего сгорания.
Вот как это достигается. В конце рабочего хода, когда поршень приближается к н.м.т., он сначала открывает выпускные (в нашем случае более высокие) окна, через которые и устремляются отработавшие газы в выпускной коллектор; давление в цилиндре начинает падать. Еще через мгновенье поршень, продолжая двигаться вниз, открывает более низкие продувочные окна, сквозь которые в цилиндр врывается струя сжатого воздуха, подаваемого воздуходувкой. Сжатый воздух выталкивает газы через выпускные окна в атмосферу и заполняет объем цилиндра, частично проходя через него «транзитом». Выпуск газов происходит в тот очень короткий промежуток времени, пока окна не перекроет поршень при своем движении вверх от нижней мертвой точки. При этом закрываются продувочные окна, а затем выпускные. После того как поршень перекроет окна, начнется процесс сжатия воздуха.
Процесс очистки цилиндра от отработавших газов и наполнения его чистым воздухом получил название продувки.

Двухтактные дизели: принцип действия, устройство, плюсы и минусы

Современный дизельный двигатель — это эффективное устройство с высоким КПД. Если раньше дизеля ставились на сельскохозяйственную технику (тракторы, комбайны и т. п.), то в настоящее время ими оснащаются обычные городские автомобили. Конечно, у кого-то дизель ассоциируется с черным дымом из выхлопной трубы. Некоторое время так и было, но сейчас система выпуска отработавших газов модернизировалась, и такого неприятного последствия практически нет. Давайте рассмотрим двухтактные дизели и их особенности.

Немного общей информации

Ключевой особенностью дизельного двигателя является его повышенный КПД. Обусловлено это в большей степени топливом, которое на 15 % эффективнее. Если взглянуть на топливо на молекулярном уровне, то здесь мы увидим длинную цепочку углеродов. Благодаря этому на выходе КПД дизельного горючего несколько выше, нежели бензина.

Принцип действия классического дизельного мотора заключается в преобразовании возвратно-поступательных движений кривошипно-шатунного механизма (КШМ) в механическую работу. Ключевое отличие от ДВС работающего на бензине заключается в способе приготовления и воспламенения топливно-воздушной смеси.

В дизеле образование смеси происходит непосредственно в камере сгорания. Соответственно при максимальном давлении происходит воспламенение смеси. Хорошо это или плохо, мы разберемся несколько позже, а сейчас рассмотрим самое интересное.

Двухтактный дизельный двигатель

Подобный тип мотора в настоящее время имеет небольшое распространение, как и роторно-поршневой двигатель. Состоит из газовой турбины, которая необходима для преобразования тепловой энергии в механическую и нагнетателя. Принцип действия последнего заключается в повышении мощности за счет увеличения давления. Как следствие — снижается расход горючего.

Цилиндры в двигателе располагаются напротив друг друга в горизонтальном положении. Собственно, почему двухтактные двигатели носят такое название? Обусловлено это тем, что цилиндры работают всего в один оборот коленчатого вала. То есть получается два такта.

Рабочий цикл двухтактного дизеля выглядит следующим образом. Когда поршень опускается в свою нижнюю точку, то цилиндр наполняется воздухом. В определённый момент времени открывается выпускной клапан и через него выходят газы. В это же время через нижние окна в цилиндры поступает воздух.

Принцип действия двухтактного дизеля

Примечательно то, что в подобных ДВС используется два вида продувки: оконная и клапанно-щелевая. Когда окна цилиндров используются для впуска и выпуска – то это оконная система. Если выпуск налажен через специальный клапан в цилиндре, а впуск через окна, значит система клапанно-щелевая. Такой способ продувки и очистки наиболее оптимален. Связано это с тем, что не весь воздух остается в цилиндре. Некоторая его часть выходит за пределы мотора. Так называемая прямоточная система очистки обеспечивает оптимальное удаление продуктов сгорания из цилиндров.

Двухтактный дизельный двигатель может работать довольно длительное время. Это обусловлено меньшим количеством механических действий внутри цилиндра. Так поршень начинает свое движение из нижней мертвой точки. В это время закрывается впускной клапан и окна. Следовательно, начинается процесс сжатия. Форсунка располагается у верхней мертвой точке. Топливо воспламеняется от горячего воздуха. При движении поршня вниз продукт горения расширяется.

Клапанно-щелевая продувка

Существенного повышения КПД мотора можно добиться только когда воздух проходит вдоль оси цилиндра. Если на первых двухтактных моторах применялась кольцевая продувка, которая не давала должного результата, то в дальнейшем использовалась только клапанно-щелевая. Благодаря такой системе удалось свести к минимуму объём не продуваемых областей в цилиндре. Система позволила немного раньше закрывать выпускной клапан. Такой подход существенно сократил потери свежего заряда и улучшил наддув. Сегодня клапанно-щелевая продувка используется на судах и военной технике.

Преимущества двухтактного мотора

Первый подобный двигатель был представлен миру тогда же, когда и классический дизельный 4-тактный ДВС. Относительно недавно появились 2-тактные бензиновые двигатели. Ключевая особенность — небольшая масса. Тут можно говорить о снижении веса на 40-50 % от классического дизеля с турбиной. Довольно важная характеристика для современного автомобиля, когда разработчики пытаются как можно больше снизить массу авто.

Еще одно преимущество заключается в том, что устройство двухтактного дизеля несколько проще своего собрата. Меньшее количество запчастей делают обслуживание несколько проще и дешевле. Хотя с последним можно и поспорить ведь далеко не все сталкивались с таким типом моторов. Такой силовой агрегат можно реконструировать и ремонтировать с минимальным количеством инструмента. По сути, это упрощенный вариант двигателя внутреннего сгорания. Кроме того, наличие нагнетателя позволяет существенно экономить горючее. Примерно 40-50 % дизтоплива сохраняется благодаря двухтактной конструкции. Конечно, все моторы имеют свои плюсы и минусы. В некоторых случаях более важны недостатки, так как именно они ограничивают повсеместное применение.

О слабых сторонах

Опять же, если перечислять все недостатки списком, то на память придет роторный ДВС. Дело в том, что тут стоит выделить следующие минусы:

  • высокая стоимость обслуживания;
  • отсутствие запасных частей;
  • большая цена на двигатель.

Первый пункт обусловлен отсутствием мастерских, где готовы взяться за ремонт двухтактного дизеля. Это вполне естественно и логично ведь не так много производителей выпускают серийно подобные моторы, еще меньшее количество устанавливает их на автомобили. На обычной станции техобслуживания такой силовой агрегат если и сделают, то обойдется дорого.

Но обычно возникает сразу третий минус — нет необходимых запчастей. Точнее, они есть, но только под заказ. Ждать их можно как месяц, так и больше. Если в крупных городах и будет возможность отремонтировать такой ДВС и найти запчасти, то в глубинке это сделать вряд ли получится. Вот такие плюсы и минусы имеет данный дизель. Ну а сейчас рассмотрим еще несколько важных деталей.

Немного о системе смазки

Как мы уже разобрались, этот дизель имеет свои сильные и слабые стороны. Крайне важной деталью является система смазки. Она отвечает за эффективную работу трущихся деталей и их охлаждение, отмывание от нагара. Всем уже давно известно, что для этих целей используется моторное масло, рекомендованное производителем. В нашем случае все точно так же.

Несколько слов хотелось бы сказать о расходе смазочной жидкости. Тут экономии ждать не стоит. Обусловлено это добавлением смазки непосредственно в топливо для обеспечения нормальной работы трущихся деталей. Вполне логично, что расходоваться оно будет очень быстро, и его нужно будет регулярно добавлять. Более того, небольшое масляное голодание может вывести из строя двухтактные дизели очень быстро. По крайней мере, на порядок раньше обычного бензинового ДВС. Поэтому система смазки, скорее, слабая, нежели сильная сторона и об этом не нужно забывать.

Читать еще:  Что за двигатель пежо 4008

Об экологичности

В последние годы инженеры постоянно стараются снизить количество вредных веществ, выбрасываемых выхлопной системой в атмосферу. Вопрос экологии стоит достаточно остро. Если в европейских странах уже давно введены экологические нормы, то в России все намного хуже. Что же касается дизелей в целом, то и они уже довольно давно используют специальные сажевые фильтры и малозольные масла, которые существенно уменьшают вредные выбросы в атмосферу.

В нашем же случае было сказано о том, что масло сгорает в камере. Это уже большой минус с точки зрения экологии. Кроме того, часть топливно-воздушной смеси не воспламеняется и вырывается наружу. Все это наряду с выпускной системой наносит серьезный вред атмосфере. Поэтому двухтактные дизели наиболее целесообразно применять в военной технике и авиации.

Авиационный дизель

Широкое распространение данные типы моторов получили в летной технике. Больше всего используют на легких самолетах. Высокая мощность при небольших габаритах — стали определяющими факторами при выборе силовых агрегатов для самолетов. Кроме того, наличие наддува и отсутствие зажигания сыграли только в лучшую сторону. Работа ДВС останавливается с подачей топливно-воздушной смеси.

Стоит отметить, что двухтактный судовой дизель не боится перепада температур. Более того, зачастую большой мороз является дополнительным охлаждением ДВС, что очень хорошо. Все это, наряду с использованием относительно недорогого горючего, делает этот дизель крайне популярным. Правда распространение ограничивается сложностью установки и обслуживания компрессора. Кроме того, в топливо нужно добавлять смазку, а это также обходится не дешево. В целом же для авиации это отличный вариант, что обусловлено вышеперечисленными факторами.

Повышенная тепловая нагрузка

Мы рассмотрели ключевые особенности данного мотора. К примеру, теперь вы знаете какой вес двигателя и в чем заключаются его сильные и слабые стороны. Но хотелось бы рассмотреть еще несколько конструктивных особенностей силового агрегата. В частности, речь пойдет о системе охлаждения. Дело в том, что двухтактный дизель является более теплонагруженный, нежели 4-тактный. Обусловлено это повышенной частотой работы поршня. Получается, что существенно увеличивается температура в камере. Для её снижения необходимо эффективное охлаждение. Если речь об авиации, то тут все понятно. Высокие скорости и потоки встречного воздуха делают свое дело. Это же касается и эксплуатации в большие морозы, когда низкая температура окружающей среды является только плюсом.

В остальных же случаях необходимо жидкостное охлаждение. Обычно это классическая система. Единственное на что стоит обратить внимание, так это на исправность всех систем. Перегрев, даже кратковременный, может привести к заклиниванию или другим проблемам. В любом случае возможность такого исхода необходимо исключить.

Ресурс дизеля

Отдельного внимания заслуживает плановый ресурс данного мотора. Дело в том, что сам по себе дизель менее жизнеспособен, нежели бензиновый силовой агрегат. Обусловлено это использованием своеобразного топлива. Оно оставляет нагар в камере сгорания и форсунках. Все это существенно сокращает срок службы. Что же касается двухтактных ДВС на дизеле, то тут многое зависит от условий эксплуатации и своевременного обслуживания. Если масло меняется вовремя, а мотор не перегревается, то может работать 200 000 километров. Для бронетехники ресурс значительно меньше и составляет порядка 100 000 километров.

Важные детали

Современный двухтактный дизель характеризуется продвинутой топливной системой. Работает мотор тихо и плавно. Но так было не всегда. Механический ТНВД имел свои особенности. В частности, на каждую форсунку шла отдельная магистраль. Такой подход хоть и имел слабые стороны, но славился своей надежностью и высокой ремонтопригодностью. Позже ТНВД совершенствовались и становились значительно сложнее. Появилась система «Коммон рейл». В топливной рампе такого плана поддерживалось давление порядка 2 тысяч килограмм на сантиметр в квадрате. Форсунки стали более чувствительны к качеству топлива. Плохое горючее приводило к их быстрому выходу из строя.

Подведем итоги

В общем и целом, двухтактные дизели будут развиваться и совершенствоваться. Равно, как и роторно-поршневые ДВС, они считаются недоработанными. Однако в скором будущем они займут свою нишу в автомобилестроении. Уже сегодня они используются в авиации и на крупных промышленных и военных судах. Это надежный и относительно неприхотливый мотор, который при должном обслуживании будет работать исправно. В это же время он не лишен и проблем. К примеру, остро стоит вопрос охлаждения и смазки. Еще более важным является вопрос экологии. Необходима сложная система фильтрации для достижения экологических норм. По этой простой причине массовое производство, использование таких моторов на всех типах авто затруднительно и пока не представляется возможным. Но улучшение системы очистки отработавших газов способно решить эту проблему и приведет к тому, что двухтактные моторы будут широко распространены.

Двухтактный дизельный двигатель внутреннего сгорания

Изобретение относится к двигателестроению. Двухтактный дизельный двигатель внутреннего сгорания включает картер, коленчатый вал, цилиндр с крышкой, поршень, соединенный с коленвалом крейцкопфным механизмом, впускные окна в цилиндре, сообщенные с компрессором, выпускные окна в цилиндре, форсунки, установленные в крышке цилиндра, одна из которых соединена с топливным насосом высокого давления, другая — с водяным насосом высокого давления. Он дополнительно снабжен термодатчиком, размещенным в крышке цилиндра, плунжерным переключателем с электромагнитами, соединенным трубопроводами с соответствующими насосами и емкостями для топлива и воды, электронным блоком управления, соединенным электропроводом с термодатчиком и электромагнитами, крышкой, разделяющей полости цилиндра и картера, каналом, соединяющим дополнительно окно в нижней части цилиндра с впускными окнами. Изобретение обеспечивает более полное сжигание топлива, и, соответственно, повышение КПД двигателя при снижении уровня токсичности отработанных газов и уменьшения отбора мощности с коленвала на систему охлаждения. 5 ил.

Изобретение относится к двигателестроению и может быть использовано при изготовлении двухтактных дизельных двигателей внутреннего сгорания о крейцкопфным кривошипно-шатунным механизмом.

Известен двухтактный двигатель внутреннего сгорания, который уменьшает потери тепла в системе охлаждения за счет утилизации рассеиваемого тепла, по патенту РФ №2062342, F 02 С 5/00, 1994г.

Недостатком известного двигателя является сложность и громоздкость конструкции системы охлаждения и использования энергии пара в дополнительном двигателе внешнего подвода тепла.

Наиболее близким по технической сущности к предлагаемому изобретению является выбранный в качестве прототипа двухтактный двигатель внутреннего сгорания по патенту СССР №1796037, F 02 В 47/02, 1993г., который снижает токсичность отработанных газов, повышает коэффициент полезного действия /КПД/.

Недостатком данного двигателя является невозможность использования высокотемпературного режима в камере сгорания, т.к. при высоких температурах происходит закоксование масла и залегание поршневых колец. Вследствие этого, а также из-за недостаточного совершенства процесса продувки не используется возможность более полного сжигания топлива и, соответственно, получения более высокого КПД, меньшего уровня токсичности отработанных газов.

Целью изобретения является повышение КПД, снижение уровня токсичности отработанных газов, улучшение экономичности при работе во всем диапазоне чисел оборотов коленвала и величин нагрузки.

Это достигается тем, что двухтактный дизельный двигатель внутреннего сгорания, содержащий картер, коленчатый вал, цилиндр, крышку цилиндра, поршень, соединенный с коленвалом крейцкопфным кривошипно-шатунным механизмом, впускные окна в цилиндре, сообщенные с компрессором, выпускные окна в цилиндре, форсунки, установленные в крышке цилиндра, одна из которых соединена с топливным насосом высокого давления, другая — с водяным насосом высокого давления, дополнительно снабжен элементом термометрическим /термодатчиком/, размещенным в крышке цилиндра, плунжерным переключателем с электромагнитами, соединенным трубопроводами с соответствующими насосами и емкостями для топлива и воды, электронным блоком управления, соединенным электропроводами с термодатчиком и электромагнитами плунжерного переключателя, крышкой, разделяющей полости цилиндра и картера, каналом, соединяющим дополнительное окно в нижней части цилиндра с впускными окнами.

На фиг.1, 2, 3 изображена предлагаемая конструкция двухтактного дизельного двигателя, на фиг.4, 5 — варианты принципиальной схемы топливной системы, где 1 — картер, 2 — коленчатый вал, 3 — цилиндр, 4 — поршень, 5 — крышка цилиндра, 6 — крейцкопфный кривошипно-шатунный механизм, 7 — дополнительный канал продува, 8 — крышка, 9 — термодатчик, 10 — плунжерный переключатель, 11 — электромагнит, 12 — электромагнит, 13 — топливный насос высокого давления, 14 — водяной насос высокого давления, 15 — форсунка, 16 — форсунка, 17 — топливный бак, 18 — водяной бак, 19 — фильтр, 20 — фильтр, 21 — насос, 22 — насос, 23 — компрессор наддува, 24 — электронный блок управления, 25 — впускной патрубок, 26 — выпускной патрубок, 27 — впускные окна, 28 — выпускные окна.

Предлагаемый двухтактный дизельный двигатель внутреннего сгорания работает следующим образом. Цилиндр 3 отделен от картера 1 крышкой 8, поршень 4 работает без смазки в высокотемпературном режиме. Впускные и выпускные окна 27, 28 и дополнительный канал 7 открывается и закрываются поршнем при его движении в цилиндре. Очистка цилиндра от продуктов сгорания и наполнение его свежим воздухом осуществляется путем вытеснения выпускных газов предварительно сжатым до определенного давления воздухом от компрессора 23 и за счет подачи свежего сжатого воздуха из нижней части цилиндра 3 по каналу 7. Продув цилиндров производится дополнительно и под поршнем с целью подачи воздуха в выхлопные газы в зону их самой высокой температуры для более полного сгорания топлива и, следовательно, уменьшения токсичности, а также с целью охлаждения штока крейцкопфа и улучшения продувки над поршнем через канал 7. Охлаждение осуществляется за счет впрыскивания воды через форсунку 16 по сигналу термодатчика 9, поступающему в электронный блок управления 24, который управляет переключателем 10.

Перед пуском двигателя положение плунжера переключателя 10 должно быть как указано на схеме фиг.4. В этом положении плунжера топливо из бака 17 через фильтры 19 насосом 21 подается в топливный насос высокого давленая 13. Вода из бака 18, подаваемая насосом 22 в переключатель 10, сливается обратно в бак.

Первый такт работы двигателя соответствует ходу поршня от верхней мертвой точки /В.М.Т./ к нижней мертвой точке /Н.М.Т./. В цилиндре произошло сгорание топлива, и начался процесс расширения газов и движение поршня вниз. При подходе днища поршня к выпускным окнам 28 продукты сгорания начинают выходить из цилиндра через выпускные окна в выпускной патрубок 26. Впускные окна 27 открываются поршнем позднее, когда давление в цилиндре над поршнем становится примерно равным давлению, создаваемому компрессором 23. Начинается очистка цилиндра от продуктов сгорания. С момента открытия окон 27 поршнем процесс очистки цилиндра усиливается за счет вытеснения запаса свежего воздуха из нижней части цилиндра через канал 7 с дополнительным давлением, что продолжается при дальнейшем ходе поршня вниз до Н.М.Т.

Читать еще:  Что такое плавный пуск двигателя в насосе

При ходе поршня от Н.М.Т. к В.М.Т. /второй такт/ процесс продувки продолжается до момента перекрытия впускных в выпускных окон 26, 27 поршнем. Давление в цилиндре к этому моменту выше атмосферного за счет наддува компрессором 23 и за счет потока воздуха с дополнительным давлением из нижней части цилиндра через канал 7.

После закрытия окон 26, 27 начинается процесс сжатия воздуха. С необходимым опережением до В.М.Т. в цилиндр через форсунку 15 впрыскивается топливо.

При дальнейшей работе двигателя происходит нагревание цилиндра 3, крышки цилиндра 5, днища поршня 4, и при достижении заданной температуры /максимальной/ электронный блок управления 24 по сигналу термодатчика 9 с помощью электромагнитов 11, 12 производит кратковременные с интервалом переключения, при которых вода, подаваемая насосом 22, поступает в насос высокого давления 14 и через форсунку 26 впрыскивается в камеру сгорания, где, испаряясь, создает рабочее давление на поршень, превращая энергию тепла в механическую, и одновременно осуществляет охлаждение.

В эти моменты переключения топливо, подаваемое насосом 21 в переключатель 10, сливается обратно в топливный бак 17.

После охлаждения до заданной температуры эти переключения прекращаются, плунжер переключателя 10 возвращается в первоначальное положение.

Система охлаждения с использованием термодатчика 9, плунжерного переключателя 10 с электромагнитами 11, 12, электронного блока управления 24 работает автоматически при всех режимах работы двигателя без отбора мощности с коленвала.

Подача чистого воздуха через канал 7 под дополнительным давлением при ходе поршня к Н.М.Т. увеличивает количество кислорода в цилиндре. Использование высокотемпературного режима способствует лучшему сжиганию топлива с меньшим образованием дыма, все это вместе создает большую мощность в цилиндре, увеличивает КПД и снижает токсичность выхлопных газов.

Двухтактный дизельный двигатель внутреннего сгорания, содержащий картер, коленчатый вал, цилиндр, крышку цилиндра, поршень, соединенный с коленвалом крейцкопфным кривошипно-шатунным механизмом, впускные окна в цилиндре, сообщенные с компрессором, выпускные окна в цилиндре, форсунки, установленные в крышке цилиндра, одна из них соединена с топливным насосом высокого давления, другая — с водяным насосом высокого давления, отличающийся тем, что он дополнительно снабжен термодатчиком, размещенным в крышке цилиндра, плунжерным переключателем с электромагнитами, соединенным трубопроводами с соответствующими насосами и емкостями для топлива и воды, электронным блоком управления, соединенным электропроводами с термодатчиком и электромагнитами, крышкой, разделяющей полости цилиндра и картера, каналом, соединяющим дополнительное окно в нижней части цилиндра с впускными окнами.

Двухтактный дизельный двигатель

Дизельный двигатель двухтактного является дизельным двигателем , который работает путем объединения то , что , как правило , четыре цикла — потребление, сжатие, сгорание и выхлопное только в два штрихи (один оборот) двигателя. Он был изобретен Хьюго Гюльднером [ де ] в 1899 году. [1]

Во всех дизельных двигателях используется воспламенение от сжатия — процесс, при котором топливо впрыскивается после сжатия воздуха в камере сгорания, что приводит к самовоспламенению топлива . Напротив, в бензиновых двигателях используется цикл Отто , а в некоторых современных высокоэффективных двигателях — цикл Аткинсона , в котором топливо и воздух смешиваются перед входом в камеру сгорания, а затем воспламеняются свечой зажигания .

По словам разработчика первого работающего дизельного двигателя Имануэля Лаустера , Дизель никогда не намеревался использовать двухтактный принцип для дизельного двигателя. Считается, что Хьюго Гюльднер изобрел двухтактный дизельный двигатель. Он спроектировал первый действующий двухтактный дизельный двигатель в 1899 году и убедил компании MAN , Krupp и Diesel профинансировать строительство этого двигателя по 10 000 фунтов стерлингов каждый. [2] Двигатель Гюльднера имел рабочий цилиндр 175 мм и продувочный цилиндр 185 мм; у обоих был ход 210 мм. Указанная выходная мощность составляла 12 л.с. (8826 Вт). [3] В феврале 1900 года этот двигатель впервые заработал своим ходом. Однако с его фактической выходной мощностью всего 6,95 л.с. (5112 Вт) и высоким потреблением топлива 380 г · л.с. −1 · ч −1 (517 г · кВт −1 · ч −1 ), он не оказался успешным. ; [4] Проект двухтактного дизельного двигателя Гюльднера был заброшен в 1901 году. [5]

В 1908 году компания MAN Nürnberg предложила поршневые двухтактные дизельные двигатели одностороннего действия для морского использования [6]. Первый поршневой двигатель двустороннего действия от MAN Nürnberg был изготовлен в 1912 году для электростанции. [7] В 1913/1914 году в сотрудничестве с Blohm + Voss в Гамбурге компания MAN Nürnberg построила первый поршневой двухтактный двигатель двустороннего действия для морского применения. [8] Во время Первой мировой войны компания MAN Nürnberg построила шестицилиндровый поршневой двухтактный дизельный двигатель двустороннего действия с номинальной мощностью 12400 л.с. (9120 кВт). [6] В 1919 году компания MAN перевела свой цех по производству двухтактных дизельных двигателей из Нюрнберга в Аугсбург [9].

Чарльз Ф. Кеттеринг и его коллеги, работавшие в исследовательской корпорации General Motors и дочерней компании GM Winton Engine Corporation в 1930-х годах, продвинули искусство и науку о технологии двухтактных дизельных двигателей для создания двигателей с гораздо более высокими отношениями мощности к массе и диапазоном мощности. чем современные четырехтактные дизели. Первое мобильное применение двухтактных дизельных двигателей было связано с дизельными обтекаемыми моделями в середине 1930-х годов, а продолжающиеся разработки привели к созданию улучшенных двухтактных дизелей для локомотивов и судов в конце 1930-х годов. Эта работа заложила основу дизелизации железных дорог в 1940-х и 1950-х годах. [10]

Двухтактные двигатели внутреннего сгорания механически проще четырехтактных , но более сложны в термодинамических и аэродинамических процессах, согласно определениям SAE . В двухтактном двигателе четыре «цикла» работы двигателя внутреннего сгорания (впуск, сжатие, зажигание, выпуск) происходят за один оборот — 360 ° вращения — тогда как в четырехтактном двигателе они происходят за два полных оборота — 720 ° вращения. В двухтактном двигателе в любой момент времени во время работы двигателя выполняется более одной функции.

  • Впуск начинается, когда поршень находится около нижней мертвой точки (НМТ). Воздух поступает в цилиндр через отверстия в стенке цилиндра ( впускных клапанов нет ). Все двухтактные дизельные двигатели требуют для работы искусственного всасывания и будут использовать вентилятор с механическим приводом или турбокомпрессор для наполнения цилиндра воздухом. На ранней стадии всасывания заряд воздуха также используется для вытеснения любых оставшихся продуктов сгорания от предыдущего рабочего такта, процесс, называемый продувкой .
  • Когда поршень поднимается, всасываемый воздух сжимается. Вблизи верхней мертвой точки впрыскивается топливо, что приводит к сгоранию из-за чрезвычайно высокого давления заряда и тепла, создаваемого сжатием, которое перемещает поршень вниз. По мере того, как поршень движется вниз в цилиндре, он достигает точки, в которой выпускное отверстие открывается для удаления газов сгорания под высоким давлением. Однако в большинстве современных двухтактных дизельных двигателей используются расположенные сверху тарельчатые клапаны и однопоточная продувка . Продолжительное движение поршня вниз откроет отверстия для впуска воздуха в стенке цилиндра, и цикл начнется снова.

В большинстве двухтактных двигателей EMD и GM (например, Detroit Diesel ) очень немногие параметры регулируются, а все остальные фиксируются механической конструкцией двигателей. Отверстия для продувки открыты от 45 градусов перед BDC до 45 градусов после BDC (этот параметр обязательно симметричен относительно BDC в поршневых двигателях). Остальные регулируемые параметры связаны с выпускным клапаном и синхронизацией впрыска (эти два параметра не обязательно симметричны относительно ВМТ или, если на то пошло, НМТ), они установлены для максимального выхлопа газов сгорания и максимального впуска наддувочного воздуха. Один распределительный вал управляет выпускными клапанами тарельчатого типа и насос-форсункой , используя три лепестка: два лепестка для выпускных клапанов (либо два клапана на самых маленьких двигателях, либо четыре клапана на самом большом, и третий лепесток для насос-форсунки).

Специально для двухтактных двигателей EMD ( 567 , 645 и 710 ):

  • Рабочий такт начинается в ВМТ ([0 °]; впрыск топлива ведет в ВМТ на 4 ° [356 °], так что впрыск топлива будет завершен в ВМТ или очень скоро после этого; [ необходима цитата ] топливо воспламеняется так быстро, как он впрыскивается), после рабочего хода выпускные клапаны открываются, что значительно снижает давление и температуру газа сгорания и подготавливает цилиндр к продувке для продолжительности рабочего хода 103 °.
  • Продувка начинается 32 ° позже, в НМТ-45 ° [135 °], и заканчивается в НМТ + 45 ° [225 °], для продувки продолжительностью 90 градусов; задержка на 32 ° при открытии продувочных отверстий (ограничение длины рабочего хода) и задержка на 16 ° после закрытия продувочных отверстий (тем самым инициируя такт сжатия) максимизируют эффективность продувки, тем самым максимизируя выходную мощность двигателя, сводя к минимуму расход топлива двигателя.
  • К концу продувки все продукты сгорания вытесняются из цилиндра, и остается только «наддувочный воздух» (продувка может выполняться с помощью нагнетателей Рутса для впуска наддувочного воздуха при температуре немного выше температуры окружающей среды или фирменного турбокомпрессора EMD, который действует как нагнетатель во время запуска и как турбонагнетатель при нормальных условиях эксплуатации, а также для впуска наддувочного воздуха при значительно более высоких температурах [i], и который турбонаддув обеспечивает 50-процентное увеличение максимальной номинальной мощности по сравнению с двигателями с наддувом. такое же смещение).
  • Ход сжатия начинается на 16 ° позже, при НМТ + 61 ° [241 °], для продолжительности хода сжатия 119 °.
  • В двигателях с EFI насос-форсунка с электронным управлением по-прежнему приводится в действие механически; количество топлива, подаваемого в насос-форсунку плунжерного типа, контролируется блоком управления двигателем (в локомотивах, блоком управления локомотивом), а не традиционным регулятором Woodward PGE или эквивалентным регулятором двигателя, как с обычными насос-форсунками.

Специально для двухтактных двигателей GM ( 6-71 ) и связанных с ними дорожных / внедорожных / морских двухтактных двигателей:

  • При этом используются те же основные соображения (двигатели GM / EMD 567 и GM / Detroit Diesel 6-71 были спроектированы и разработаны в одно и то же время одной и той же командой инженеров и технических менеджеров).
  • В то время как некоторые двигатели EMD и Detroit Diesel используют турбонаддув, только такие двигатели EMD используют систему турбонаддува; в таких двигателях Detroit Diesel используется обычный турбокомпрессор, в некоторых случаях с промежуточным охлаждением, за которым следует обычный вентилятор Рутса, поскольку турбокомпрессорная система была бы слишком дорогостоящей для этих очень дорогостоящих и высококонкурентных приложений.
0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию