0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство управления коллекторным двигателем это как

Управление коллекторным двигателем постоянного тока методом ШИМ

Для подачи питания на обмотки ротора коллекторного двигателя постоянного тока используется встроенный коммутатор, получивший наименование коллектор. Конструктивный элемент состоит из медных пластин, изолированных друг от друга с помощью диэлектрика. По пластинам скользят графитовые щетки, попеременно подавая электрическое напряжение на разные обмотки ротора. В результате образуется переменное магнитное поле, взаимодействующее с постоянным полем статора. Так электрическая энергия преобразуется в механическую и вал двигателя начинает вращаться. На производстве и в быту применяется мотор-редуктор — система, состоящая из электродвигателя и редуктора. В качестве примера можно привести схему движения щеток лобового стекла автомобиля. Вращение ротора передается на цилиндрические колеса с косыми зубьями, которые приводят дворники в рабочее положение.

Регулирование оборотов двигателя постоянного тока методом ШИМ

Главные характеристики электродвигателя — мощность, скорость вращения и крутящий момент (иногда еще выделяют момент инерции ротора). От этих величин зависит, сможет ли электропривод справиться с возложенными на него задачами. В большинстве электрических сетей используется переменный ток, который перед подачей на щетки электромотора нужно сделать постоянным. Для этого используют выпрямители, в их схеме нередко предусмотрена возможность добавления дополнительных сегментов для регулировки напряжения. Основной недостаток выпрямителя заключается в том, что при его работе происходит существенная потеря мощности, а значит, снижается КПД и часть электроэнергии уходит в никуда.

Для того, чтобы управление двигателем постоянного тока было эффективным, применяют широтно-импульсную модуляцию, сокращенно ШИМ. Принцип действия ШИМ можно объяснить на простом примере: если взять электрический мотор малой мощности и запитать его от батарейки, вал двигателя будет вращаться с максимальной скоростью, но если попеременно замыкать и размыкать контакты, идущие к источнику питания, частота вращения ротора изменится, какое-то время он будет двигаться по инерции. На щетки коллектора подается полное напряжение, а ШИМ позволяет установить точное время подачи. Способ дает возможность управлять вращением вала с применением цифровых микроконтроллеров.

Изменение скорости вращения ротора

Регулятор оборотов коллекторного двигателя подает на щетки импульсы. Например, максимальное напряжение электромотора 12 Вольт, а нам нужно, чтобы он работал в половину своей силы. Как реализовать это на практике, используя широтно-импульсную модуляцию? Для этого нужно рассмотреть понятие импульса — всплеска напряжения. Если таких всплесков в течение 1 секунды случается 10, то говорят о том, что частота импульсов составляет 10 Герц. То есть, за секунду на щетки электродвигателя 10 раз подается полное напряжение. Для начала нужно определить период следования импульсов T по формуле:

где F — это частота. В нашем случае частота равна 10 Гц, тогда:

то есть, напряжение поднимается от 0 Вольт до 12 и снова опускается до 0 за 0,1 секунды.

Еще одной важной характеристикой импульса является скважность S — это отношение периода следования к продолжительности импульса, не имеющее единиц измерения. Параметр определяется по формуле:

где t — длина импульса. В нашем случае длина импульса составит половину от периода следования импульса, ведь нам нужен мотор, работающий вполсилы. Тогда получим:

Теперь вычислим, сколько процентов от максимального числа оборотов мы получим с нашими показателями, для этого найдем коэффициент заполнения D, выражаемый в процентах и вычисляемый по формуле:

где S — полученная ранее скважность. Выполняем подсчет:

Если в течение секунды на обмотку электродвигателя мы 10 раз подадим напряжение, которое будет длиться 0,05 секунды, то получим скорость вращения, соответствующую 6 Вольтам напряжения. В нашем случае периоды подачи и отсутствия напряжения равны, но если нужно получить повышенное количество оборотов ротора, длину импульса t нужно увеличивать. Например, необходимо получить 75% от максимальной скорости вращения вала, тогда длина импульса t должна быть равна:

то есть 75% времени периода следования импульсов нужно подавать ток.

Теперь вычислим коэффициент заполнения:

Это наглядный пример. В реальности после завершения подачи тока на щетки, вал электродвигателя продолжает двигаться по инерции, поэтому если угловая скорость ротора растет и не успевает уменьшиться в течение паузы, регулирование потеряет свою эффективность.

Способы торможения двигателя

Если используется мотор-редуктор, или электродвигатель с нагрузкой на вал, обеспечивающей быстрое торможение, то в принципиальной схеме ШИМ достаточно предусмотреть ключ и один диод. Во время работы ключ подает импульс на коллектор, отчего происходит разгон ротора, после прекращения подачи питания, вал затормаживается самостоятельно, благодаря статической нагрузке. При этом существует 2 основных режима работы:

  1. Режим непрерывного тока. Ток в якоре хотя и уменьшается во время паузы, но все же продолжает протекать в прежнем направлении.
  2. Режим прерывистого тока. Ток в якоре течет только во время действия импульса, на паузе напряжение равняется нулю.

На двигателях, которые работают без статической нагрузки, необходимо применять электрическое торможение. Для этого в принципиальную схему включают сопротивление. Во время паузы, ключ присоединяет якорь мотора к сопротивлению, для запуска процесса динамического торможения.

Виды преобразователей

Широтно-импульсные преобразователи, осуществляющие управление двигателем постоянного тока, состоят из силовой части, схемы управления и подразделяются на следующие виды:

  • Тиристорные. Дополняются схемами с параллельной и последовательной искусственной коммутацией.
  • С запираемыми тиристорами. Схема работы мало отличима от транзисторных.
  • Транзисторные. Характеризуются низкой инерционностью и минимальным внутренним сопротивлением.

Широтно-импульсный регулятор оборотов коллекторного двигателя позволяет гибко настраивать скорость вращения ротора с минимальным показателем рассеивания мощности.

Приглашаем на выставку «МЕТАЛЛООБРАБОТКА-2018»

Коллекторный двигатель- Принцип работы и отличия от бесколлекторного двигателя

В конструкции современного автомобиля задействован коллекторный двигатель, агрегат, использующий контакты с целью определения положения нахождения ротора.Текущие тенденции на мировом рынке автомобилестроения сводятся к полной замене силовых установок, работающих за счет внутреннего сгорания топлива на электрические моторы. За последние годы, призывы к увеличению планки по количеству вредных выбросов в атмосферу, звучат, чуть ли не ежедневно, а это укрепляет позиции электрических агрегатов.

Принцип работы электрического двигателя, преобразовать электрическую энергию в механическую работу. Если сравнивать агрегаты с двигателями внутреннего сгорания, электрические моторы предпочтительней, преимущество: компактность, простота, долговечность, экологически безвредны и масса других плюсов.

В конструкции современного автомобиля задействован коллекторный двигатель, агрегат, использующий контакты с целью определения положения нахождения ротора.

Электромобиль Tesla model S:

Описание коллекторного двигателя

Прежде, перед рассмотрением вариантов установок, проясним, что значит понятие коллекторный двигатель. Электрический мотор, это устройство, преобразующее электрику в механику и наоборот. Если обмотка мотора имеет связующее звено с узлом коллектора и принимает участие в трансформации энергии, то такой агрегат носит название коллекторный.

Якоби Б.С. (1801-1874гг) изобретатель первого коллекторного двигателя в 1837г.

Элементы электрического двигателя:

  • Ротор, деталь мотора, подвержена вращению;
  • Статор, деталь мотора, остаётся в стационарном положении;
  • Индуктор, кусок агрегата, который с целью сформировать момент, участвует в образовании потока магнитного поля. В состав индуктора входят: магниты, совокупность витков. Механизм выполняется в качестве части ротора или неподвижной детали;
  • Якорь, агрегат, поддерживающий движение нагрузочного, упорядоченного движения частиц, носителей электрического заряда и за счет индукции, формирующий электродвижущую силу. Функцию якоря выполняет либо ротор, либо статор;
  • Щетки, деталь, являющаяся частью электрической цепи, посредством которой ток передаётся к якорю. Материал, из которого делают щётки, как правило, графит. Двигатель содержит минимум две щётки для «положительного» и «отрицательного» полюсов;
  • Коллектор, часть агрегата, контактирующая со щетками и распределяющая ток.

Название агрегата произошло благодаря наименованию узла ротора электродвигателя – коллектора. Визуально коллектор представляет собой деталь, в виде цилиндра, которая состоит из пластин меди, изолированных между собой.

Важно! Опытные пользователи знают, что для увеличения срока службы новой установки, обкатать коллекторный двигатель. Для этого в течение 10-15 минут агрегат работает на 15-20% мощности без нагрузки. Это позволит избежать прожигания коллектора и даст прирост мощности на уровне 10-15%.

Универсальный коллекторный двигатель.

Принцип работы коллекторного двигателя

Для того, что бы понять, как работает коллекторный двигатель, вспомним электромагнитную индукцию. Поместим на оси вращения проводник, с циркулирующим током внутри него, между магнитами, северный и южный полюс. Проводник вращается в направление движения тока, это принцип работы коллекторного двигателя. Питание проходит через щетки на конец проводника. Пол оборота, и происходит переключение тока, способствующее непрерывному вращению в заданном направлении. Коллекторный двигатель оборудован несколькими проводниками, поэтому окружность коллектора, делится на контакты.

Читать еще:  Двигатель caterpillar 3512b технические характеристики

От статора ток проходит к обмоткам ротора посредством последовательного соединения, щёток и коллектора. Коллекторные двигатели применяют в изделиях, где важна скорость вращения. Моторы не тяжёлые, с относительно небольшими габаритными размерами.

Принцип работы коллекторного двигателя.

Важно! Коллекторный двигатель, способен работать в обратном порядке, преобразовывать механическую энергию в электрическую энергию. В этом случае, роль установки — генератор.

Разновидности коллекторных двигателей

Для удобства восприятия в любой сфере существует классификация изделий по критериям, признакам, функциональности. Что касается коллекторных установок, классификация проходит по разным параметрам.

Схема универсального коллекторного двигателя.

При классификации по питанию:

  1. Универсальный коллекторный двигатель;
  2. Коллекторный агрегат (направление движения заряженных частиц в электрическом поле = const);
  • С индуктором на постоянных магнитах;
  • С индуктором на катушках возбуждения:
  • Катушка возбуждения (тип обмотки независимый);
  • Катушка возбуждения (тип обмотки параллельный);
  • Катушка возбуждения (тип обмотки последовательный);
  • Катушка возбуждения (тип обмотки смешанный).
Универсальный коллекторный агрегат.

Установки применяются в быту, коллекторный двигатель переменного тока 220в используется в бытовой технике. Мотор потребляет постоянный и переменный ток. Популярность в применении обусловлена реверсом, регулировкой скорости вращения, необходимостью частоты выше 3000 об./мин.

Применяя однофазный коллекторный двигатель переменного тока, обмотки статора и ротора соединяют последовательно или параллельно. Последний вариант соединения уже никто не делает. Универсальный однофазный коллекторный агрегат работает с переменным и постоянным током.

Недостатки универсального механизма:

  • Стоимость агрегата;
  • Сложность обслуживания;
  • Шумность работы, сложное управление, возникновение радиопомех;
  • Полезное действие ниже необходимого, если применяется источник переменного тока;
  • Износ щеток по причине образования искр.
Коллекторный агрегат (ток = const).

Индуктор на постоянных магнитах.

Конструктивное отличие от универсальной установки заключается в использовании магнитов, а не катушек возбуждения. Агрегат популярен и распространен в большей степени, чем остальные виды коллекторных установок. Положительный момент, это стоимость и простота конструкции. Кроме того, устройство легко в управлении. Камень преткновения, применяемые магниты, которые напрямую связаны с характеристиками мощности установки. На установку влияет образуемое магнитами поле.

Положительные аспектыОтрицательные аспекты
Значительный момент при незначительных оборотах;Широкий диапазон регулировок;Цена агрегата доступна потребителям.Невысокая мощность;Старение магнитов, потеря свойств.

Коллекторный двигатель с индуктором на постоянных магнитах.

Катушки возбуждения (независимая и параллельная)

Название типа получено как следствие независимого питания. Особенность, для возникновения момента питание индуктора и якоря должны отличаться, иначе ротор установки не будет крутиться.

Если нет возможности организовать подачу разного тока, то подключение делается параллельно. Оба типа одинаковы с точки зрения характеристик. Момент у силовых установок высокий (даже на низком вращении), рост частоты — момент уменьшается. Особенность: независимость катушки и якоря. Что бы агрегат вышел из строя, достаточно току, возбуждающему катушку, упасть до значения «0».

Схема независимого возбуждения:

Положительные аспектыОтрицательные аспекты
Отсутствие магнитов, поэтому время не влияет на работоспособность агрегата;Низкие обороты – высокий момент;Легкая регулировка, организовывается регулятором.Завышена цена, в сравнении с оппонентами;Падение тока катушки возбуждения ниже предельного значение чревато поломкой.

Схема параллельного возбуждения:

Обмотка возбуждения (тип последовательный)

Последовательность, предполагает равное значение тока. При токе статора, значением ниже расчётного, падает мощность потока магнитного. Рост нагрузки сопоставим росту мощности потока, до тех пор, пока не произойдёт выход на предельный уровень, когда рост тока не увеличивает поток магнитный.

Такая особенность не позволяет запускать двигатель, если расчётная нагрузка, ниже 25%. Сделав это, произойдёт резкое неконтролируемое увеличение частоты вращения. Особенность наложила отпечаток на использование агрегатов, однако, если мощность установки ниже 200Вт, возможно падение нагрузки, даже до холостого хода.

Положительные аспектыОтрицательные аспекты
Отсутствие магнитов, поэтому время не влияет на работоспособность агрегата;Значение момента высоко, при этом обороты незначительны.Стоимость завышена, оппоненты дешевле;Значение момента понижается с увеличением оборотов;Сложности в регулировке скоростью вращения агрегата;Эксплуатация без нагрузки ведёт к поломке агрегата.

Схема последовательного возбуждения.

Обмотка возбуждения (тип смешанный)

В таких агрегатах, установлено две катушки, подключены последовательно и параллельно. Первая носит статус основной за счет возможности применять большую силу магнетизма, вторая обладает статусом вспомогательной. Возможно подключение катушек встречным или согласованным методом. От выбранного подключения зависит, чему будет соответствовать интенсивность поля.

Подключить коллекторный двигатель можно, в случае надобности получения неизменной частоты, или увеличения оборотов при увеличении нагрузки.

Схема смешанного возбуждения.

Положительные аспектыОтрицательные аспекты
Отсутствие магнитов, поэтому время не влияет на работоспособность агрегата;Низкие обороты – высокий момент;Надёжность, хорошо переносит граничные нагрузки;Простое управление.Высокая стоимость.

Следующим шагом развития электрических двигателей стали бесколлекторные моторы. Отличие коллекторного двигателя от бесколлекторного, отсутствие у последнего, как коллектора, так и щеток. Функцию ротора в двигателе выполняют магниты, которые расположены вокруг вала, тут же расположены и обмотки. Положение ротора контролируется датчиком. Информация от датчика обрабатывается вычислителем. Агрегат обладает положительными аспектами, присущими установкам с коллектором, не обслуживается, единственный отрицательный аспект, это высокая стоимость.

бесколлекторный двигатель

Двигатели используются во многих областях техники. Для того чтобы происходило вращение ротора двигателя необходимо наличие вращающегося магнитного поля. В обычных двигателях постоянного тока это вращение осуществляется механическим способом с помощью щеток, скользящих по коллектору. При этом возникает искрение, а, кроме того, из-за трения и износа щеток для таких двигателей необходимо постоянное техническое обслуживание.

Благодаря развитию техники стало возможным генерировать вращающееся магнитное поле электронным способом, что было воплощено в бесколлекторных двигателях постоянного тока (БДПТ).

Устройство и принцип действия

Основными элементами БДПТ являются:

  • ротор, на котором укреплены постоянные магниты;
  • статор, на котором установлены обмотки;
  • электронный контроллер.

По конструкции такой двигатель может быть двух типов:

с внутренним расположением ротора (inrunner)

с внешним расположением ротора (outrunner)

В первом случае ротор вращается внутри статора, а во втором – ротор крутится вокруг статора.

Двигатель типа inrunner используется в том случае, когда необходимо получить большие обороты вращения. Этот двигатель имеет более простую стандартную конструкцию, которая позволяет использовать неподвижный статор для крепления двигателя.

Двигатель типа outrunner подходит для получения большого момента при низких оборотах. В этом случае крепление двигателя производится с использованием неподвижной оси.

Двигатель типа inrunner — большие обороты, низкий крутящий момент. Двигатель типа outrunner — маленькие обороты, высокий крутящий момент.

Число полюсов в БДПТ может быть разным. По числу полюсов можно судить о некоторых характеристиках двигателя. Например, двигатель с ротором, имеющим 2 полюса, имеет большее число оборотов и малый момент. Двигатели с увеличенным количеством полюсов имеют больший момент, но меньшее число оборотов. Изменением числа полюсов ротора можно менять число оборотов двигателя. Таким образом, изменяя конструкцию двигателя, производитель может подобрать необходимые параметры двигателя по моменту и числу оборотов.

Управление БДПТ

Регулятор оборотов, внешний вид

Для управления бесколлекторным двигателем используется специальный контролер — регулятор скорости вращения вала двигателя постоянного тока. Его задачей является генерация и подача в нужный момент на нужную обмотку необходимого напряжения. В контроллере для приборов с питанием от сети 220 В чаще всего используется инверторная схема, в которой происходит преобразование тока с частотой 50 Гц сначала в постоянный ток, а затем в сигналы с широтно-импульсной модуляцией (ШИМ). Для подачи питающего напряжения на обмотки статора используются мощные электронные ключи на биполярных транзисторах или других силовых элементах.

Регулировка мощности и числа оборотов двигателя осуществляется изменением скважности импульсов, а, следовательно, и действующим значением напряжения, подаваемого на обмотки статора двигателя.

Принципиальная схема регулятора оборотов. К1-К6 — ключи D1-D3 — датчики положения ротора (датчики Холла)

Важным вопросом является своевременное подключение электронных ключей к каждой обмотке. Для обеспечения этого контроллер должен определять положение ротора и его скорость. Для получения такой информации могут быть использованы оптические или магнитные датчики (например, датчики Холла), а также обратные магнитные поля.

Читать еще:  Автономный контроллер для шагового двигателя своими руками

Более распространено использование датчиков Холла, которые реагируют на наличие магнитного поля. Датчики размещаются на статоре таким образом, чтобы на них действовало магнитное поле ротора. В некоторых случаях датчики устанавливают в устройствах, которые позволяют изменять положение датчиков и, соответственно, регулировать угол опережения (timing).

Регуляторы оборотов вращения ротора очень чувствительны к силе тока, проходящего через него. Если вы подберете аккумуляторную батарейку с большей выдаваемой силой тока, то регулятор сгорит! Правильно подбирайте сочетания характеристик!

Достоинства и недостатки

По сравнению с обычными двигателями БДПТ имеют следующие достоинства:

  • большой кпд;
  • высокое быстродействие;
  • возможность изменения частоты вращения;
  • отсутствие искрящих щеток;
  • малые шумы, как в звуковом, так и высокочастотном диапазонах;
  • надежность;
  • способность противостоять перегрузкам по моменту;
  • отличное соотношение габаритов и мощности.

Бесколлекторный двигатель отличается большим кпд. Он может достигать 93-95%.

Высокая надежность механической части БД объясняется тем, что в нем используются шарикоподшипники и отсутствуют щетки. Размагничивание постоянных магнитов происходит довольно медленно, особенно, если они выполнены с использованием редкоземельных элементов. При использовании в контроллере защиты по току срок службы этого узла довольно высок. Фактически срок службы БДПТ может определяться сроком службы шарикоподшипников.

Недостатками БДПТ является сложность системы управления и высокая стоимость.

Применение

Области применения БДТП следующие:

  • создание моделей;
  • медицина;
  • автомобилестроение;
  • нефтегазовая промышленность;
  • бытовые приборы;
  • военная техника.

Использование БД для авиамоделей дает значительное преимущество по мощности и габаритам. Сравнение обычного коллекторного двигателя типа Speed-400 и БДТП того же класса Astro Flight 020 показывает, что двигатель первого типа имеет кпд 40-60%. Кпд второго двигателя в тех же условиях может достигать 95%. Таким образом, использование БД позволяет увеличить почти в 2 раза мощность силовой части модели или время ее полета.

Благодаря малому шуму и отсутствию нагревания при работе БДПТ широко используются в медицине, особенно в стоматологии.

В автомобилях такие двигатели используются в подъемниках стекол, электростеклоочистителях, омывателях фар и электрорегуляторах подъема кресел.

Отсутствие коллектора и искрения щеток позволяет использовать БД в качестве элементов запорных устройств в нефтегазовой промышленности.

В качестве примера использования БД в бытовой технике можно отметить стиральную машину с прямым приводом барабана компании LG. Эта компания использует БДТП типа Outrunner. На роторе двигателя имеется 12 магнитов, а на статоре – 36 катушек индуктивности, которые намотаны проводом диаметром в 1 мм на сердечники из магнитопроводящей стали. Катушки соединены последовательно по 12 штук в фазе. Сопротивление каждой фазы равно 12 Ом. В качестве датчика положения ротора используется датчик Холла. Ротор двигателя крепится к баку стиральной машины.

Повсеместно данный двигатель используется в жестких дисках для компьютеров, что делает их компактными, в CD и DVD приводах и системах охлаждения для микро-электронотехнических устройств и не только.

Наряду с БД малой и средней мощности в промышленности с тяжелыми условиями работы, судовой и военной промышленностях все больше используются большие БДПТ.

БД большой мощности разработаны для американских ВМС. Например, компания Powertec разработала БДТП мощностью 220 кВт со скоростью в 2000 об/мин. Момент двигателя достигает 1080 Нм.

Кроме указанных областей, БД применяются в проектах станков, прессов, линий для обработки пластмасс, а также в ветроэнергетике и использовании энергии приливных волн.

Характеристики

Основные характеристики двигателя:

  • номинальная мощность;
  • максимальная мощность;
  • максимальный ток;
  • максимальное рабочее напряжение;
  • максимальные обороты (или коэффициент Kv);
  • сопротивление обмоток;
  • угол опережения;
  • режим работы;
  • габаритно-массовые характеристики двигателя.

Основным показателем двигателя является его номинальная мощность, то есть мощность, вырабатываемая двигателем в течение длительного времени его работы.

Максимальная мощность – это мощность, которую может отдать двигатель в течение кратковременного отрезка времени, не разрушаясь. Например, для упомянутого выше бесколлекторного двигателя Astro Flight 020 она равна 250 Вт.

Максимальный ток. Для Astro Flight 020 он равен 25 А.

Максимальное рабочее напряжение – напряжение, которое могут выдержать обмотки двигателя. Для Astro Flight 020 задан диапазон рабочих напряжений от 6 до 12 В.

Максимальное число оборотов двигателя. Иногда в паспорте указывается коэффициент Kv – число оборотов двигателя на один вольт. Для Astro Flight 020 Kv= 2567 об/В. В этом случае максимальное число оборотов можно определить умножением этого коэффициента на максимальное рабочее напряжение.

Обычно сопротивление обмоток для двигателей составляет десятые или тысячные доли Ома. Для Astro Flight 020 R= 0,07 Ом. Это сопротивление влияет на кпд БДПТ.

Угол опережения представляет собой опережение переключения напряжений на обмотках. Оно связано с индуктивным характером сопротивления обмоток.

Режим работы может быть длительным или кратковременным. При долговременном режиме двигатель может работать длительное время. При этом выделяемое им тепло полностью рассеивается и он не перегревается. В таком режиме работают двигатели, например, в вентиляторах, конвейерах или эскалаторах. Кратковременный режим используется для таких устройств, как например, лифт, электробритва. В этих случаях двигатель работает короткое время, а затем долгое время остывает.

В паспорте на двигатель приводятся его размеры и масса. Кроме того, например, для двигателей, предназначенных для авиамоделей, приводятся посадочные размеры и диаметр вала. В частности, для двигателя Astro Flight 020 приведены следующие характеристики:

  • длина равна 1,75”;
  • диаметр равен 0,98”;
  • диаметр вала равен 1/8”;
  • вес равен 2,5 унции.

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

Двигатели переменного тока (ЭПТ) относятся к категории силовых агрегатов, в основу работы которых заложен принцип преобразования электрической энергии в механическое вращение.

Функционирование таких электротехнических устройств основано на эффекте вращающегося магнитного поля, создаваемого в статоре за счет соответствующего распределения питающего напряжения. Для понимания принципа работы двигателей переменного тока потребуется ознакомиться с существующими разновидностями этих агрегатов.

Виды двигателей переменного тока.

В зависимости от конструктивных особенностей и характера связи электромагнитного (э/м) поля вращающегося ротора и ЭДС неподвижного статора различают синхронные и асинхронные двигатели. В первых эта связь жесткая, а в асинхронных частоты их вращения отличаются на величину так называемого «скольжения».

По количеству полюсов, электромагнитных катушек статора и типу питающего напряжения все известные модели делятся на:

  • однофазные (включая конденсаторные);
  • трехфазные двигатели переменного тока;
  • шаговые (многофазные) агрегаты.

По способу организации возбуждения и характеру связи с ротором различают коллекторные и бесколлекторные электродвигатели.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ

Независимо от типа электрической машины (синхронная или асинхронная, коллекторная или бесколлекторная) все они обладают следующими техническими характеристиками:

  • количество рабочих фаз – одна или три (за исключением шаговых моделей);
  • мощность электрическая и на валу;
  • схемы соединения обмоток («звезда» или «треугольник»);
  • класс защиты оборудования.

В однофазных машинах запуск осуществляется либо вручную, либо в них предусматривается специальная пусковая обмотка (фазосдвигающая цепочка с конденсатором).

В 3-х фазных агрегатах вращающееся э/м поле создается тремя независимыми катушками, размещенными на статоре под углом 120 градусов одна к другой. Соответствующие им ЭДС разнесены в электрическом пространстве на те же углы.

Виды мощности:

1. Электрической называют мощность, потребляемую от сети фазными обмотками двигателя в рабочем режиме.

2. Механическая мощность на валу – развиваемое ЭПТ вращательное усилие, измеряемое в Ваттах и характеризующее эффективность преобразования или КПД всего двигателя.

Схема включения обмоток выбирается с учетом особенностей конструкции агрегата и условий его работы. Чаще всего в бытовом электрооборудовании и инструменте применяется схема включения типа «звезда».

Класс защиты электродвигателей от проникновения внутрь механических частиц грязи, а также от попадания влаги устанавливается согласно стандарту EN 60034.

Для его обозначения используют две английские буквы IP со следующими за ними цифрами. Первая соответствует уровню защиты от попадания твердых частиц, а вторая – от проникновения во внутрь влаги.

КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

Конструкция коллекторных электродвигателей содержит в своем составе следующие обязательные компоненты:

  • ротор особой конструкции;
  • статор с основными и возбуждающими обмотками;
  • коллекторный узел с комплектом щеток.

Основа ротора (якоря) – магнитопровод из пластин электротехнической стали, между полюсами которого при изготовлении по определенной схеме укладываются витки медного провода.

Читать еще:  Что такое расточка двигателя и гильз

Концы обмоток выводятся на коллекторный узел, являющийся коммутаторной частью системы (здесь осуществляется их переключение). С его помощью обмотка якоря соединяется со статорной в последовательную цепочку. При этом создаваемое в ней поле взаимодействуют с магнитным потоком статора, создавая необходимый вращающий момент.

Преимущества и недостатки.

К достоинствам коллекторных двигателей переменного тока относят плавность запуска и простоту схемы возбуждающей цепочки, включенной последовательно с основной обмоткой. Отмечается также возможность получения значительных по величине вращательных моментов. Эти изделия надежны в работе и хорошо «держат» предельные нагрузки на валу.

Недостатки этих агрегатов представлены ниже:

  • повышенный уровень шумности;
  • низкий по сравнению с бесколлекторными конструкциями кпд;
  • необходимость постоянного обслуживания коллекторного узла из-за износа и загрязнения его элементов (ламелей);
  • потребность в обновлении и регулировки щеток;
  • высокий уровень радиопомех.

К минусам коллекторных электродвигателей также относят недостаточную надежность рабочих узлов и малые сроки эксплуатации входящих в их состав элементов.

Области применения.

Область применения коллекторных двигателей определяется особенностью их конструкции.

При частоте сетевого напряжения 50 Гц скорость вращения вала у этих изделий достигает 9000-10000 об/мин. Именно поэтому двигатели с коллекторным узлом типа широко применяются в бытовой аппаратуре самого различного класса.

Это:

  • стиральные машины;
  • электромясорубки, кофемолки и миксеры;
  • электроинструмент (дрели, болгарки, перфораторы и т. п.).

Сегодня традиционные коллекторные двигатели везде, где это возможно, заменяются современными бесщеточными агрегатами.

С расширением и удешевлением современной электронной базы их производство становится более выгодным. Одновременно совершенствуются схемы управления, работающие на полупроводниковых элементах различного класса.

УПРАВЛЕНИЕ ДВИГАТЕЛЯМИ ПЕРЕМЕННОГО ТОКА

В основу управления режимами работы двигателей переменного тока заложен принцип зависимости частоты вращения вала от величины напряжения, прикладываемого к катушкам статора.

При фиксированной величине тока это означает изменение мощности, передаваемой в нагрузочную (роторную) цепь. Еще один параметр, которым нередко приходится управлять при эксплуатации двигателей рассматриваемого класса – направление вращения вала (реверс).

Для реализации двух этих возможностей применяются различные схемы, построенные на компонентах того или иного типа.

Это могут быть:

  • транзисторные ключи или реле;
  • тиристорные элементы;
  • электронные тиристоры (симисторы).

Транзисторы применяется сегодня крайне редко, поскольку на смену им пришли более эффективные тиристорные и симисторные управляющие элементы.

С их помощью удается непосредственно изменять величину мощности, отдаваемой в нагрузочную цепочку ротора. Для этих целей применяются современные методы широтно-импульсного или фазоимпульсного управления.

Для получения нужной частоты вращения вала и мощности, отдаваемой непосредственно в нагрузку, используется особый электронный элемент – симистор. Степень его открытия задается подачей на управляющий электрод соответствующего напряжения или последовательности прямоугольных импульсов.

Во втором случае частота следования задает время открытия прямого перехода симистора, что в конечном счете определяет величину мощности, передаваемой в управляемую роторную цепочку.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Коллекторный и бесколлекторный двигатели

В ассортименте продукции Greenworks есть инструменты с коллекторным (щёточным) и бесколлекторным (бесщёточным) двигателями. Но везде делается акцент только на бесколлекторном электродвигателе. Почему только на нём, и для чего тогда устройства с щёточным? Расскажем в данной статье преимущества и недостатки каждого электродвигателя и ответим на эти два вопроса.

Коллекторный двигатель

Начнём с того, что двигатель — это устройство, которое преобразует какой-либо вид энергии в механический и наоборот. Эффективность данного процесса зависит от внутренней конструкции двигателя, которая в свою очередь зависит от источника тока (постоянного или переменного).

Устройство коллекторного двигателя

Якорь. Стержнем всей конструкции является якорь, он же металлический вал. Вал является движущимся элементом, от которого зависит крутящий момент. На нём также располагается ротор.

Ротор. Связан с ведущим валом. Его внешняя конструкция напоминает барабан, который вращается внутри статора. Задача ротора получать или отдавать напряжение рабочему телу.

Подшипники. Они расположены на противоположных концах якоря для его сбалансированного вращения.

Щётки. Выполнены обычно из графита. Их задача предавать напряжение через коллектор в обмотки.

Коллектор (коммутатор). Он выполнен в виде соединенных между собой медных контактов. Во время процесса вращения он принимает на себя энергию с щёток и направляет её в обмотки.

Обмотки. Расположены на роторе и статоре разных полярностей. Их функция в генерировании собственного магнитного поля под воздействием разных полярностей, за счёт чего якорь приходит в действие.

Сердечник статора. Выполнен из металлических пластин. Может иметь катушку возбуждения с полярным напряжением обмотки ротора. Или — постоянные магниты. Данная конструкция зависит от источника напряжения. Является статичным элементом всего механизма.

  • Стоимость меньше, чем у бесколлекторных двигателей (БД).
  • Конструкция относительно проще конструкции БД.
  • В виду этого, техническое обслуживание проще.

На высоких оборотах увеличивается трение щёток. Отсюда вытекает:

  • Быстрый износ щёток.
  • Снижение мощности инструмента.
  • Появление искр.
  • Задымление инструмента.
  • Выход из строя инструмента раньше его «жизненного цикла».

Если рассматривать бытовую сферу применения, то коллекторный двигатель является традиционным и бюджетным вариантом эксплуатации (и самым часто используемым).
Инструменты на данном типе двигателя преданно и верно справятся с любой повседневной задачей в пределах своих возможностей. Так как такие инструменты по стоимости значительно дешевле инструментов на бесколлекторном двигателе, их рассматривает категория потребителей, которая придерживается мнения: «ничто не вечно». Зачем переплачивать, если любой агрегат может выйти из строя? Мы же считаем, что при надлежащих условиях эксплуатации любой инструмент может прослужить верой и правдой довольно долгий срок. Но выбор за Вами.

Бесколлекторный двигатель

Если в коллекторном двигателе всё приходит в действие за счёт механики, то в бесщёточном — чистая электроника. Также позиции некоторых элементов в конструкции меняются местами. В коллекторном двигателе обмотки находились на роторе, а постоянные магниты — на статоре. У бесколлеторного — постоянные магниты переносятся на ротор, а катушки с обмоткой располагаются на статоре. Также ротор и статор могут менять свои позиции: есть модели двигателей с внешним ротором. Здесь отсутствуют щётки и коллектор, вместо них добавлен микропроцессор (контроллер) и кулер для охлаждения системы. Микропроцессор контролирует положение ротора, скорость вращения, равномерное распределение напряжения по катушкам обмотки.

Основные типы бесщёточного двигателя :

  • Асинхронный — это двигатель, который преобразовывает электроэнергию переменного тока в механическую. Название происходит от разной скорости вращения магнитного поля и ротора. Частота вращения ротора меньше, чем у магнитного поля, создаваемого обмотками статора (Например, двигатель DigiPro, который используется в продукции Greenworks).
  • Синхронный — это двигатель переменного тока, у которого частота вращений ротора равна частоте вращений магнитного поля.

Тип двигателя с внешним ротором

Расположение ротора и статора в бесщёточном двигателе DigiPro

  • Из-за отсутствия щёток меньше трения.
  • Меньше подвержены износу.
  • Отсутствие искр и возможного возгорания.
  • Упрощенная регулировка крутящего момента в больших пределах.
  • Экономия расходуемой энергии.
  • У инструментов с реверсом одинаковая мощность в обоих направлениях вращения.
  • Быстрый запуск с больших скоростей.
  • Могут разгоняться до предельных показателей.
  • Некоторые модели при сильной нагрузке оснащены системой защиты двигателя.
  • Значительно дороже в цене, чем коллекторные двигатели.
  • Техническое обслуживание более узкоспециализированное.

Несомненно бесколлекторные двигатели ориентированы на профессиональные работы с приличной нагрузкой. Несмотря на высокие показатели усовершенствованного типа двигателя, его единственный недостаток бьёт по кошельку. И перед тем, как приобретать инструмент на том или ином двигателе, прежде всего надо поставить перед собой вопрос: для каких целей он нужен. Уже исходя из ответа делать свой выбор.

Сколько людей — столько и мнений. Компания Greenworks старается делать качественную продукцию на разных типах двигателя, чтобы каждый мог подобрать себе инструмент по предпочтениям, функционалу и необходимой мощности под конкретные задачи, которые у каждого клиента свои. Именно поэтому, например, в разделе «Ручной инструмент» Вы можете наблюдать один тип агрегата на коллекторном и бесколлекторном двигателях. Какой лучше? Выбор за Вами!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector