1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем измеряется скольжение асинхронного двигателя

Что такое скольжение асинхронного двигателя

В результате взаимодействия магнитного поля с токами в роторе асинхронного двигателя создается вращающий электромагнитный момент, стремящийся уравнять скорость вращения магнитного поля статора и ротора.

Разность скоростей вращения магнитного поля статора и ротора асинхронного двигателя характеризуется величиной скольжения s = (n 1 – n 2 ) / n 1, где n 1 – синхронная скорость вращения поля, об/мин, n2 – скорость вращения ротора асинхронного двигателя, об/мин. При работе с номинальной нагрузкой скольжение обычно мало, так для электродвигателя, например, с n 1 = 1500 об/мин, n2 = 1 460 об/мин, скольжение равно: s = ((1500 – 1460) / 1500) х 100 = 2,7%

Асинхронный двигатель не может достичь синхронной скорости вращения даже три отсоединенном механизме, так как при ней проводники ротора не будут пересекаться магнитным полем, в них не будет наводиться ЭДС и не будет тока. Асинхронный момент при s = 0 будет равен нулю.

В начальный момент пуска в обмотках ротора протекает ток с частотой сети. По мере ускорения ротора частота тока в нем будет определяться скольжением асинхронного двигателя : f2 = s х f1, где f1 – частота тока, подводимого к статору.

Сопротивление ротора зависит от частоты тока в нем, причем чем больше частота, тем больше его индуктивное сопротивление. С увеличением индуктивного сопротивления ротора увеличивается сдвиг фаз между напряжением и током в обмотках статора.

При пуске асинхронных двигателей коэффициент мощности поэтому значительно ниже, чем при нормальной работе. Величина тока определяется эквивалентным значением сопротивления электродвигателя и приложенным напряжением.

Величина эквивалентного сопротивления асинхронного двигателя с изменением скольжения изменяется по сложному закону. При уменьшении скольжения в пределах 1 – 0,15 сопротивление увеличивается, как правило, не более чем в 1,5 раза, в пределах от 0,15 до s н ом в 5-7 раз по отношению к начальному значению при пуске.

Ток по величине изменяется обратно пропорционально изменению эквивалентного сопротивления Таким образом, при пуске до скольжения порядка 0,15 ток опадает незначительно, а в дальнейшем быстро уменьшается.

Момент вращения может быть также определен по электромагнитной мощности на валу как отношение этой мощности к угловой скорости ротора. Величина момента пропорциональна квадрату напряжения и обратно пропорциональная квадрату частоты.

Характерными значениями момента в зависимости от скольжения (или скорости) являются начальное значение момента (когда электродвигатель еще неподвижен), максимальное значение момента (и соответствующее ему сколь жение, называемое критическим) и минимальное значение момента в пределе скоростей от неподвижного состояния до номинальной .

З начения момента для номинального напряжения приводятся в каталогах для электрических машин. Знание минимального момента необходимо при расчете допустимости пуска или самозапуска механизма с полной нагрузкой механизма. Поэтому его значение для конкретных расчетов должно быть либо определено, либо получено от завода-поставщика.

Величина максимального значения момента определяется индуктивным сопротивлением рассеяния статора и ротора и не зависит от величины сопротивления ротора.

Критическое скольжение определяется отношением сопротивления ротора к эквивалентному сопротивлению (обусловлено активным сопротивлением статора и индуктивным сопротивлением рассеяния статора и ротора).

Увеличение только активного сопротивления ротора сопровождается увеличением критического скольжения и перемещением максимума момента в область более высоких скольжений (меньшей скорости вращения). Таким путем может быть достигнуто изменение характеристик моментов.

Изменение скольжения возможно увеличением сопротивления цени ротора или потока. Первый вариант осуществим только для асинхронных двигателей с фазным ротором (от S = 1 до S = Sном ) , но не экономичен. Второй вариант осуществим при изменении питающего напряжения, но только в сторону уменьшения. Диапазон регулирования мал, так как S возрастает, но одновременно уменьшается перегрузочная способность асинхронного двигателя. По экономичности оба варианта, примерно, равноценны.

В асинхронных двига т елях с фазным ротором изменение момента при различных скольжениях осуществляется с помощью сопротивления, вводимого в цепь обмотки ротора. В асинхронных двигателях с короткозамкнутым ротором изменение момента может быть достигнуто за счет применения двигателей с переменными параметрами или с помощью частотных преобразователей .

В результате взаимодействия магнитного поля с токами в роторе асинхронного двигателя создается вращающий электромагнитный момент, стремящийся уравнять скорость вращения магнитного поля статора и ротора.

Разность скоростей вращения магнитного поля статора и ротора асинхронного двигателя характеризуется величиной скольжения s = (n 1 – n 2 ) / n 1, где n 1 – синхронная скорость вращения поля, об/мин, n2 – скорость вращения ротора асинхронного двигателя, об/мин. При работе с номинальной нагрузкой скольжение обычно мало, так для электродвигателя, например, с n 1 = 1500 об/мин, n2 = 1 460 об/мин, скольжение равно: s = ((1500 – 1460) / 1500) х 100 = 2,7%

Асинхронный двигатель не может достичь синхронной скорости вращения даже три отсоединенном механизме, так как при ней проводники ротора не будут пересекаться магнитным полем, в них не будет наводиться ЭДС и не будет тока. Асинхронный момент при s = 0 будет равен нулю.

В начальный момент пуска в обмотках ротора протекает ток с частотой сети. По мере ускорения ротора частота тока в нем будет определяться скольжением асинхронного двигателя : f2 = s х f1, где f1 – частота тока, подводимого к статору.

Сопротивление ротора зависит от частоты тока в нем, причем чем больше частота, тем больше его индуктивное сопротивление. С увеличением индуктивного сопротивления ротора увеличивается сдвиг фаз между напряжением и током в обмотках статора.

При пуске асинхронных двигателей коэффициент мощности поэтому значительно ниже, чем при нормальной работе. Величина тока определяется эквивалентным значением сопротивления электродвигателя и приложенным напряжением.

Величина эквивалентного сопротивления асинхронного двигателя с изменением скольжения изменяется по сложному закону. При уменьшении скольжения в пределах 1 – 0,15 сопротивление увеличивается, как правило, не более чем в 1,5 раза, в пределах от 0,15 до s н ом в 5-7 раз по отношению к начальному значению при пуске.

Ток по величине изменяется обратно пропорционально изменению эквивалентного сопротивления Таким образом, при пуске до скольжения порядка 0,15 ток опадает незначительно, а в дальнейшем быстро уменьшается.

Момент вращения может быть также определен по электромагнитной мощности на валу как отношение этой мощности к угловой скорости ротора. Величина момента пропорциональна квадрату напряжения и обратно пропорциональная квадрату частоты.

Характерными значениями момента в зависимости от скольжения (или скорости) являются начальное значение момента (когда электродвигатель еще неподвижен), максимальное значение момента (и соответствующее ему сколь жение, называемое критическим) и минимальное значение момента в пределе скоростей от неподвижного состояния до номинальной .

З начения момента для номинального напряжения приводятся в каталогах для электрических машин. Знание минимального момента необходимо при расчете допустимости пуска или самозапуска механизма с полной нагрузкой механизма. Поэтому его значение для конкретных расчетов должно быть либо определено, либо получено от завода-поставщика.

Величина максимального значения момента определяется индуктивным сопротивлением рассеяния статора и ротора и не зависит от величины сопротивления ротора.

Критическое скольжение определяется отношением сопротивления ротора к эквивалентному сопротивлению (обусловлено активным сопротивлением статора и индуктивным сопротивлением рассеяния статора и ротора).

Увеличение только активного сопротивления ротора сопровождается увеличением критического скольжения и перемещением максимума момента в область более высоких скольжений (меньшей скорости вращения). Таким путем может быть достигнуто изменение характеристик моментов.

Изменение скольжения возможно увеличением сопротивления цени ротора или потока. Первый вариант осуществим только для асинхронных двигателей с фазным ротором (от S = 1 до S = Sном ) , но не экономичен. Второй вариант осуществим при изменении питающего напряжения, но только в сторону уменьшения. Диапазон регулирования мал, так как S возрастает, но одновременно уменьшается перегрузочная способность асинхронного двигателя. По экономичности оба варианта, примерно, равноценны.

В асинхронных двига т елях с фазным ротором изменение момента при различных скольжениях осуществляется с помощью сопротивления, вводимого в цепь обмотки ротора. В асинхронных двигателях с короткозамкнутым ротором изменение момента может быть достигнуто за счет применения двигателей с переменными параметрами или с помощью частотных преобразователей .

Что это такое

Принцип работы трехфазного асинхронного двигателя довольно прост. На обмотку статора подается питающее напряжение, которое создает магнитный поток, в каждой фазе он будет смещен на 120 градусов. При этом суммирующий магнитный поток будет вращающимся.

Обмотка ротора является замкнутым контуром, в ней наводится ЭДС и возникающий магнитный поток придает вращение ротору, в направлении движения магнитного потока статора. Вращающий электромагнитный момент пытается уравнять скорости вращения магнитных полей статора и ротора.

Величина определяющая разность скоростей вращения магнитных полей ротора и статора, называется скольжение. Так как ротор асинхронного двигателя всегда вращается медленнее, чем поле статора — оно обычно меньше единицы. Может измеряться в относительных единицах или процентах.

Высчитывается она по формуле:

где n1— это частота вращения магнитного поля, n2 – частота вращения магнитного поля ротора.

Скольжение, это важная характеристика, характеризующая нормальную работу асинхронного электродвигателя.

Величина скольжения в разных режимах работы

В режиме холостого хода скольжение близко к нулю и составляет 2-3%, ввиду того, что n1 почти равняется n2. Нулю оно не может быть равным, потому как в этом случае поле статора не пересекает поле ротора, простыми словами, двигатель не вращается и питающее на него напряжение не подается.

Даже в режиме идеального холостого хода, величина скольжения, выраженная в процентах, не будет равной нулю. S может принимать и отрицательные значения, в том случае, когда электродвигатель работает в генераторном режиме.

В генераторном режиме (вращение ротора противоположно направлению поля статора) скольжение ЭД будет в значениях -∞

Поэтому, для детального исследования характеристик АД устанавливается зависимость, изображенная на рисунке выше. Таким образом, изменение момента (при различных значениях скольжения) в АД с фазным ротором может регулироваться путем ввода сопротивления в цепь обмоток ротора. В электродвигателях с короткозамкнутым ротором момент вращения регулируется или с помощью преобразователей частоты или использованием двигателей с переменными характеристиками.

При номинальной нагрузке электродвигателя значение скольжения будет в диапазоне 8%-2% (для двигателей малой и средней мощности), номинальное скольжение.

При увеличении нагрузки на валу (момента на валу) будет увеличиваться скольжение, простым языком, магнитное поле ротора будет все сильнее отставать (тормозить) от магнитного поля статора. Увеличение скольжения (S) приведет к пропорциональному увеличению тока ротора, следовательно, пропорционально увеличится момент. Но при этом увеличиваются активные потери в роторе (увеличивается сопротивление), которые уменьшают рост силы тока, поэтому момент увеличивается медленнее, чем скольжение.

При определенной величине скольжения момент достигнет максимального значения, потом начнет снижаться. Величину, при которой момент будет максимальным, называют критической (Sкр).

В графической форме механическую характеристику асинхронного электродвигателя можно выразить с помощью формулы Клосса:

где, Мк — это критический момент, который определяется критическим скольжением электродвигателя.

График строится исходя из характеристик, указанных в паспорте АД. При возникновении вопросов по приводу, в качестве движителя, использующего асинхронный электродвигатель, используется данный график.

Критический момент определяет величину допустимой мгновенной перегрузки электродвигателя. При развитии момента более критического (следовательно, более критического скольжения) происходит, так называемое, опрокидывание электродвигателя и двигатель останавливается. Опрокидывание — один из аварийных режимов.

Способы измерения

Существует несколько способов измерения скольжения асинхронного двигателя. Если частота вращения значительно отличается от синхронной, то ее можно измерить с помощью тахометра или тахогенератора, подключенного на валу ЭД.

Читать еще:  Характеристики двигателя nissan almera classic

Вариант измерения стробоскопическим методом с помощью неоновой лампы подходит при величине скольжения не более 5%. Для этого на валу двигателя либо наносят мелом специальную черту, либо устанавливают специальный стробоскопический диск. Освещают их неоновой лампой, и отсчитывают вращение за определенное время, потом, по специальным формулам производят вычисления. Также возможно использование полноценного стробоскопа, подобно тому что показано ниже.

Также, для измерения величины скольжения всех видов машин подходит способ индуктивной катушки. Катушку лучше всего использовать от реле или контактора постоянного тока, из-за количества витков (там 10-20 тысяч), количество витков должно быть не менее 3000. Катушку с подключенным к ней чувствительным милливольтметром, располагают у конца вала ротора. По отклонениям стрелки прибора (числу колебаний) за определенное время высчитывают по формуле величину скольжения. Помимо этого, у асинхронного двигателя с фазным ротором скольжение можно замерить с помощью магнитоэлектрического амперметра. Амперметр подключается к одной из фаз ротора и по числу отклонений стрелки амперметра производят вычисления (по формуле из способа с индуктивной катушкой).

Вот мы и рассмотрели, что собой представляет скольжение асинхронного двигателя и как его определить. Если остались вопросы, задавайте их в комментариях под статьей!

Что такое синхронный двигатель и как он работает?

В качестве устройства преобразования электрической энергии в механическую в промышленности и быту используется синхронный электродвигатель. В сравнении с другими типами электрических машин он получил меньшее распространение, но в отведенных сферах является незаменимым фаворитом. В чем особенность синхронных агрегатов и как их применяют на практике, мы рассмотрим в данной статье.

Устройство

Конструктивно синхронный электродвигатель состоит из неподвижного элемента, подвижной части, обмоток различного назначения, может комплектоваться коллекторным узлом. Далее рассмотрим каждую составляющую синхронного агрегата более детально на рабочем примере (рисунок 1).

Рис. 1. Устройство синхронного электродвигателя

  • Статор или якорь – выполняется из электротехнической стали монолитным или наборным из шихтованного железа. Предназначен для размещения рабочей обмотки, проводит силовые линии электромагнитного поля, формируемого протекающими токами.
  • Обмотка на статоре – изготавливается из медных проводников, в зависимости от типа статора синхронного электродвигателя может выполняться различными методами, способами намотки и расположения проводников. Применяется для подачи напряжения питания и формирования рабочего магнитного потока.
  • Ротор с обмоткой возбуждения – предназначен для взаимодействия с магнитным полем статора. В результате подачи напряжения на обмотку возбуждения в роторе электродвигателя создается собственное магнитное поле, задающее состояние вращающегося элемента.
  • Вал – используется для передачи вращательного усилия от электродвигателя к подключаемой к нему нагрузке. В большинстве случаев это основание, на котором крепиться шихтовка или полюса ротора, подшипники, кольца, пластины и другие вспомогательные элементы.
  • Контактные кольца – применяются для подачи питания на обмотки ротора, но устанавливаются не во всех моделях синхронных агрегатов. Питание производиться через специальный преобразователь переменного напряжения в постоянное.
  • Корпус – предназначен для защиты от воздействия внешних факторов, обеспечивает синхронному двигателю достаточную прочность и герметичность, в зависимости от условий его эксплуатации.

Принцип работы

В основе работы синхронного электродвигателя лежит взаимодействие магнитного потока, генерируемого рабочими обмотками с постоянным магнитным потоком. Наиболее распространенной моделью синхронной электрической машины является вариант с рабочей обмоткой на статоре и обмоткой возбуждения на роторе.

Рис. 2. Принцип действия синхронного электродвигателя

Как видите на рисунке 2 выше, в обмотку статора подается трехфазное напряжение из сети, которое формирует переменное магнитное поле. На обмотки ротора электродвигателя подано постоянное напряжение, которое индуцирует такой же постоянный магнитный поток у полюсов. Для наглядности рассмотрим процесс на упрощенной модели синхронного агрегата (рисунок 3).

Рис. 3. Принцип формирования потоков в синхронной электрической машине

При подаче питания на фазные витки статора электродвигателя первый пик амплитуды тока и ЭДС взаимоиндукции приходиться на фазу A, затем B и фазу C.

На графике показана периодичность чередования кривых в зависимости от времени:

  • в точке 1 максимальная ЭДС EA формирует максимальный поток, а электродвижущие силы фаз EB и EC равны между собой и противоположны по знаку, они дополняют результирующую силу.
  • в точке 2 пика достигает ЭДС EB, а электродвижущие силы фаз EA и EC становятся равны между собой и противоположны по знаку, они дополняют результирующую силу, в результате чего магнитное поле совершает вращательное движение.
  • в точке 3 максимум приходиться на ЭДС EC, а электродвижущие силы фаз EB и EA вместе дополняют результирующую силу и снова смещают вектор поля по часовой стрелке.

Оборот поля статора происходит в течении периода, а за счет того, что ротор обладает собственным электромагнитным усилием постоянным во времени, то он синхронно следует за движением переменного магнитного поля, вращаясь вокруг заданной оси. В результате такого вращения происходит синхронное движение ротора вслед за сменой амплитуды ЭДС в витках рабочих обмоток, за счет этого явления электродвигатель и получил название синхронного. Наличие отдельного питания отразилось и на схематическом обозначении таких электрических машин (рисунок 4) в соответствии с ГОСТ 2.722-68.

Рис. 4. Схематическое обозначение синхронного электродвигателя

Отличие от асинхронного двигателя

Основным отличием синхронного электродвигателя от асинхронного заключается в принципе преобразования электрической энергии в механическое вращение. У синхронного электродвигателя процесс вращения ротора идентичен вращению рабочего электромагнитного поля, вырабатываемого трехфазной сетью. А вот у асинхронного рабочее поле самостоятельно наводит ЭДС в роторе, которая уже затем вырабатывает собственный поток взаимоиндукции и приводит вал во вращение. В результате чего асинхронные электрические машины получают разность во вращении рабочего поля и нагрузки на валу, что выражается физической величиной – скольжением.

В работе классические модели асинхронных электродвигателей с короткозамкнутым ротором:

  • плохо переносят перегрузки;
  • имеют сложности пуска со значительным усилием;
  • меняют скорость вращения, в зависимости от нагруженности рабочего органа.

В некоторой степени эти недостатки преодолевает асинхронный двигатель с фазным ротором, но в полной мере избавиться от недостатков получается лишь синхронному агрегату.

Рис. 5. Отличие асинхронного от синхронного электродвигателя

Разновидности

В современной промышленности и бытовых приборах синхронные электродвигатели используются для решения самых разнообразных задач. Как результат, существенно разнятся и их конструктивные особенности. На практике выделяют несколько критериев, по которым разделяются виды синхронных агрегатов. В соответствии с ГОСТ 16264.2-85 могут подразделяться по таким техническим характеристикам:

  • питающему напряжению;
  • частоте рабочего напряжения;
  • количеству оборотов.

В зависимости от способа получения поля ротора выделяют такие типы синхронных электродвигателей:

  • С обмоткой возбуждения на роторе – синхронизирующее усилие создается за счет подачи питания от преобразователя.
  • С магнитным ротором – на валу устанавливается постоянный магнит, выполняющий те же функции, что и обмотка возбуждении, но без необходимости подпитки (см. рисунок 6).

Рис. 6. Синхронный электродвигатель с постоянными магнитами

С реактивным ротором — конструкция выполнена таким образом, что в его сердечнике происходит преломление магнитных линий, приводящее всю конструкцию в движение (см. рисунок 7). Под воздействием силового поля поперечные и продольные составляющие в роторе не равны за счет чего пластины поворачиваются вслед за полем.

Рис. 7. Пример реактивного ротора

В зависимости от наличия полюсов все синхронные электродвигатели можно подразделить на:

  • явнополюсные – в конструкции четко видны обособленные полюса с обмотками, применяются для малых скоростей;
  • неявнополюсные – полюс не выделяется, такие модели устанавливают для высоких скоростей;

В зависимости от расположения рабочих обмоток различают прямые (на статоре) и обращенные (рабочие обмотки на роторе).

Режимы работы

Большинство электрических машин обладают обратимой функцией, не составляют исключения и синхронные агрегаты. Их также можно использовать в качестве электрического привода или в качестве генератора, вырабатывающего электроэнергию. Оба режима отличаются способом воздействия на электрическую машину – подачу напряжения на рабочие обмотки или приведение в движение ротора за счет механического усилия.

Генераторный режим

Для производства электроэнергии в сеть используются именно синхронные генераторы. В большинстве случаев для этой цели используются электрические машины с фазными обмотками на статоре, что существенно упрощает процесс съема мощности и дальнейшей передачи ее в сеть. Физически генерация происходит при воздействии электромагнитного поля обмотки возбуждения синхронного генератора с обмотками статора. Силовые линии поочередно пересекают фазные витки и наводят в них ЭДС взаимоиндукции, в результате чего на клеммных выводах возникает напряжение.

Частота получаемого напряжения напрямую зависит от скорости вращения вала и вычисляется по формуле:

f = (n*p)/60 ,

где n – скорость вращения вала, измеряемая в оборотах за минуту, p – количество пар полюсов.

Синхронный компенсатор

В виду физических особенностей синхронного электродвигателя при холостом ходе аппарата он потребляет из сети реактивную мощность, что позволяет существенно улучшить cosφ системы, практически приближая его к 1.На практике режим синхронного компенсатора используется как для улучшения коэффициента мощности, так и для стабилизации параметров напряжения сети.

Двигательный режим

В синхронной машине двигательный режим осуществляется при подаче рабочего трехфазного напряжения на обмотки якоря. После чего электромагнитное поле якоря начинает толкать магнитное поле ротора, и вал приходит во вращение. Однако на практике двигательный режим осуществляется не так просто, так как мощные агрегаты не могут самостоятельно набрать необходимый ресурс скорости. Поэтому во время запуска используют специальные методы и схемы подключения.

Способы пуска и схемы подключения

Для запуска синхронного электродвигателя требуется дополнительное поле, независимое от воздействия сети. В то же время, на стартовом этапе запуск представляет собой асинхронный процесс, пока агрегат не достигнет синхронной скорости.

Рис. 8. Схема пуска синхронного двигателя

При подаче напряжения на якорь возникает ток в его обмотках и генерация ЭДС в железе ротора, который обеспечивает асинхронное движение до того момента, пока не начнется питание обмоток возбуждения.

Еще одним распространенным вариантом пуска является использование дополнительных генераторов, которые могут располагаться на валу или устанавливаться отдельно. Такой метод обеспечивает дополнительное стартовое усилие за счет стороннего крутящего момента.

Рис. 9. Генераторный способ пуска синхронного двигателя

Как видите на рисунке 9, начальное вращение мотора М осуществляется за счет генератора G, который призван вывести устройство на подсинхронную скорость. Затем генератор выводится из рабочей цепи путем размыкания контактов КМ или автоматически при установке рабочих характеристик. Дальнейшее поддержание синхронного режима происходит за счет подачи постоянного напряжения в обмотку возбуждения.

Помимо этого на практике используется схема пуска с полупроводниковыми преобразователями. На рисунке 10 приведен способ тиристорного преобразователя и с установкой вращающихся выпрямителей.

Рис. 10. Тиристорная схема пуска синхронного двигателя

В первом случае запуск синхронного электродвигателя характеризуется нулевым напряжением от преобразователя UD. За счет ЭДС скольжения через стабилитроны VD осуществляется открытие тиристоров VS. В цепь обмотки возбуждения вводится резистор R, предназначенный для предотвращения пробоя изоляции. По мере разгона электродвигателя ЭДС скольжения пропорционально снизится и произойдет запирание стабилитронов VD, цепочка заблокируется, и обмотка возбуждения получит питание постоянным напряжением через UD.

Применение

Область применения синхронных электрических машин охватывает производство электрической энергии на электростанциях. По видам генераторы подразделяются на турбинные, дизельные и гидравлические, в зависимости от способа приведения их во вращение.

Читать еще:  Rcd330g plus desay температура двигателя

Также их используют в качестве электродвигателей, которые могут переносить существенные перегрузки в процессе эксплуатации. Такие двигатели устанавливаются на вентиляторах, компрессорах, силовых агрегатах и прочем оборудовании. Отдельная категория электродвигателей применяется в точном оборудовании, где важна синхронизация операций и процессов.

Преимущества и недостатки

К преимуществам такого электродвигателя следует отнести:

  • высокий cosφ, приближающийся по величине к 1, что в значительной мере превосходит асинхронные электродвигатели;
  • более высокая механическая прочность за счет особенностей конструкции электродвигателя;
  • зависимость момента вращения от напряжения линейная, а не квадратичная, поэтому колебания электродвигателя пропорционально снижаются;
  • на валу электродвигателя присутствует постоянная скорость, не зависящая от прикладываемой нагрузки;
  • может применяться для уменьшения реактивной составляющей в сети.

Среди недостатков синхронных электродвигателей выделяют:

  • сложную конструкцию;
  • более сложный пуск;
  • необходимость использования вспомогательных устройств и блоков;
  • такие электродвигатели сложнее регулировать по числу оборотов;
  • ремонт и обслуживание также обойдется дороже, чем асинхронные электродвигатели.

Видео версия

Подарки и советы

Множество идей оригинальных и приятных подарков по любому событию и на все случаи жизни

Критическое скольжение. Принцип действия асинхронного двигателя. Скольжение

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу — F эм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.

Принцип действия асинхронного электродвигателя

Частота вращения ротора n 2 будет всегда меньше синхронной частоты n 1 , то есть ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой n 2 равной частоте статора n 1 . В этом случае поле не будет пересекать проводники роторной обмотки. Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного электродвигателя принципиально не может вращаться синхронно c полем статора. Разность между частотами поля статора n 2 и ротора n 1 называется частотой скольжения Δ n.

Отношение частоты скольжения к частоте поля называется скольжением:

В общем случае скольжение в может изменяться от нуля до единицы. Однако номинальное скольжение S н обычно составляет от 0,01 до 0,1 %. Преобразуя формулу скольжения, получим выражение частоты вращения ротора:

Обмотка ротора асинхронного электродвигателя электрически не связана с обмоткой статора. В этом отношении подобен , в котором обмотка статора является первичной обмоткой, а обмотка ротора — вторичной. Разница состоит в том, что ЭДС в обмотках трансформатора наводится неизменяющимся во времени магнитным потоком, а — потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым. В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора электродвигателя вместе с ним вращается.

ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном электродвигателе.

Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения Δ n. Она же наводит в обмотке ротора ЭДС E 2 , частота которой f 2 связана со скольжением S:

Учитывая, что f 1 =рn 1 /60, f 2 =рn 1 S/60.

Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при f 1 =50 Гц).

В итоге взаимодействия магнитного поля с токами в роторе асинхронного мотора создается крутящий электрический момент, стремящийся уравнять скорость вращения магнитного поля статора и ротора.

Разность скоростей вращения магнитного поля статора и ротора асинхронного мотора характеризуется величиной скольжения s = (n1 — n2 ) / n2, где n1 — синхронная скорость вращения поля, об/мин, n2 — скорость вращения ротора асинхронного мотора, об/мин. При работе с номинальной нагрузкой скольжение обычно не достаточно, так для электродвигателя, к примеру, с n1 = 1500 об/мин, n2 = 1 460 об/мин, скольжение равно:s = ((1500 — 1460) / 1500) х 100 = 2,7%

Асинхронный движок не может достигнуть синхронной скорости вращения даже три отсоединенном механизме, потому что при ней проводники ротора не будут пересекаться магнитным полем, в их не будет наводиться ЭДС и не будет тока. Асинхронный момент при s = 0 будет равен нулю.

В исходный момент запуска в обмотках ротора протекает ток с частотой сети. По мере ускорения ротора частота тока в нем будет определяться скольжением асинхронного мотора : f2 = s х f1, где f1 — частота тока, подводимого к статору.

Сопротивление ротора находится в зависимости от частоты тока в нем, при этом чем больше частота, тем больше его индуктивное сопротивление. С повышением индуктивного сопротивления ротора возрастает сдвиг фаз меж напряжением и током в обмотках статора.

При пуске асинхронных движков коэффициент мощности потому существенно ниже, чем при обычной работе. Величина тока определяется эквивалентным значением сопротивления электродвигателя и приложенным напряжением.

Величина эквивалентного сопротивления асинхронного мотора с конфигурацией скольжения меняется по сложному закону. При уменьшении скольжения в границах 1 — 0,15 сопротивление возрастает, обычно, менее чем в 1,5 раза, в границах от 0,15 до sн ом в 5-7 раз по отношению к исходному значению при пуске.

Ток по величине меняется назад пропорционально изменению эквивалентного сопротивления Таким макаром, при пуске до скольжения порядка 0,15 ток опадает некординально, а в предстоящем стремительно миниатюризируется.

Момент вращения электродвигателя определяется величиной магнитного потока, током и угловым сдвигом меж ЭДС и током в роторе. Любая из этих величин в свою очередь находится в зависимости от скольжения, потому для исследования рабочих черт асинхронных движков устанавливается зависимость момента от скольжения и воздействия на него подводимого напряжения и частоты.

Момент вращения может быть также определен по электрической мощности на валу как отношение этой мощности к угловой скорости ротора. Величина момента пропорциональна квадрату напряжения и назад пропорциональная квадрату частоты.

Соответствующими значениями момента зависимо от скольжения (либо скорости) являются изначальное значение момента (когда электродвигатель еще неподвижен), наибольшее значение момента (и соответственное ему сколь жение, называемое критичным) и малое значение момента в пределе скоростей от недвижного состояния до номинальной .

З начения момента для номинального напряжения приводятся в каталогах для электронных машин. Познание малого момента нужно при расчете допустимости запуска либо самозапуска механизма с полной нагрузкой механизма. Потому его значение для определенных расчетов должно быть или определено, или получено от завода-поставщика.

Величина наибольшего значения момента определяется индуктивным сопротивлением рассеяния статора и ротора и не находится в зависимости от величины сопротивления ротора.

Критичное скольжение определяется отношением сопротивления ротора к эквивалентному сопротивлению (обосновано активным сопротивлением статора и индуктивным сопротивлением рассеяния статора и ротора).

Повышение только активного сопротивления ротора сопровождается повышением критичного скольжения и перемещением максимума момента в область более больших скольжений (наименьшей скорости вращения). Таким методом может быть достигнуто изменение черт моментов.

В асинхронных двига телях с фазным ротором изменение момента при разных скольжениях осуществляется при помощи сопротивления, вводимого в цепь обмотки ротора. В асинхронных движках с короткозамкнутым ротором изменение момента может быть достигнуто за счет внедрения движков с переменными параметрами либо при помощи частотных преобразователей .

Школа для электрика

Вт номинальное скольжение приблизительно составляет от 6 до 2 % соответственно.

Определить номинальное скольжение асинхронного трехфазного двигателя, ротор которого вращается с частотой й2900 об / мин, если синхронная частота вращения магнитного поля щ3000 об / мин.

Определить номинальное скольжение асинхронного трехфазного двигателя, ротор которого вращается с частотой п 2900 об / мин, если синхронная частота вращения магнитного поля nl 3000 об / мин.

Величина номинального скольжения зависит от сопротивления ротора. Меньшим номинальным скольжением при одинаковой мощности и числе полюсов обладают обычно двигатели с короткозамкнутым ротором нормального исполнения. У этих двигателей в силу конструктивных особенностей сопротивление ротора имеет относительно меньшую величину, что ведет к уменьшению значений критического скольжения SK [ формула (2 — 39) ] и номинального скольжения SH. По тем же причинам при увеличении мощности двигателя падает величина его номинального скольжения и растет жесткость естественной характеристики. Последнее иллюстрируется кривой рис. 2 — 35, построенной по средним данным для двигателей разной мощности.

Величина номинального скольжения зависит от сопротивления ротора. Наименьшим номинальным скольжением при одинаковой мощности и числе полюсов обладают обычно двигатели с короткозамкнутым ротором нормального исполнения. У этих двигателей в силу конструктивных особенностей сопротивление ротора имеет относительно небольшую величину, что ведет к уменьшению значений критического скольжения SK [ формула (2 — 39) ] и номинального скольжения SH. По тем же причинам при увеличении мощности двигателя уменьшается величина его номинального скольжения и растет жесткость естественной харак-теристики. Последнее иллюстрируется кривой рис. 2 — 35, построенной по средним данным для двигателей разной мощности.

Теоретическая и практическая кривые зависимости момента асинхронной машины от скольжения.| Кривые зависимости момента асинхронного двигателя от скольжения для роторных клеток различного исполнения.

Повышение номинального скольжения достигается за счет применения роторных клеток с повышенным сопротивлением.

Зависимость потребного номинального момента двигателя от момента инерции маховика при различных значениях номинального скольжения.

Увеличение номинального скольжения связано со снижением средней угловой скорости двигателя шор.

Величина номинального скольжения SH колеблется в пределах от 2 до 12 % в зависимости от номинальной мощности и типа электродвигателя нормального исполнения. Двигатели большей номинальной мощности обычно имеют меньшую величину номинального скольжения.

Увеличение номинального скольжения двигателя может привести как к уменьшению, так и к увеличению максимального усилия в штангах в зависимости от режима помпирования; при этом изменение усилия, обусловленное смягчением характеристики двигателя, оказывается в общем случае небольшим.

Выбор номинального скольжения SH у АКД значительно меньше влияет на величину kn, чем при симметричном питании. Часто для повышения kn надо снижать SH. Однако при т 15 возможны случаи, когда при уменьшении SH кратность пускового момента падает. Это объясняется тем, что при меньших значениях SH эллиптичность поля при пуске оказывается большей. Влияние относительного активного сопротивления статора ps и коэффициента рассеяния невелико и неоднозначно. Обычно, если при симметричном питании критическое скольжение SK 1, кратность пускового момента при росте ps и с немного увеличивается или не изменяется совсем, при SK 1 незначительно уменьшается.

При номинальном скольжении по формулам (11.13) — (11.18) определяют КПД т) Р V (Р А Р в) и номинальный момент Мп.

При номинальном скольжении по формулам (11.13) — (11.18) определяют КПД Ц — РК / (РА РВ) и номинальный момент Мн.

В процессе взаимодействия магнитного поля и тока в роторе асинхронного электродвигателя создается вращающий момент, который позволяет уровнять скорость статора, ротора и вращения электромагнитного поля. Величина скольжения характеризуется скоростью вращения ротора, статора и магнитного поля.

От чего зависит величина скольжения электродвигателя

  • Как правило, скольжение относительно невелико при работе электродвигателя с номинальной нагрузкой. Например, при работе электромотора 1500 оборотов в минуту скольжение равно 2,7%.
  • Асинхронные электродвигатели не могут достичь синхронной скорости даже, если отсоединить механизм. Проводники ротора никогда не будут пересекаться с магнитным полем, в них не будет ЭДС, соответственно не будет и тока. При этом асинхронный момент будет равен нулю.
  • В момент пуска в обмотку ротора поступает ток, соответствующий частоте сети. По мере ускорения частота тока будет определена скольжением. При этом сопротивление ротора будет зависеть от частоты тока. Индуктивное сопротивление будет возрастать по мере увеличения частоты тока.
  • Величины эквивалентного сопротивления изменяются в соответствии с законами физики. Если скольжение электродвигателя уменьшается, сопротивление соответственно увеличивается.
  • При пусковом моменте до развития скольжения в пределах 0,15 сила сопротивления уменьшается незначительно. При дальнейшей работе наоборот – быстро уменьшается. Величина момента вращения определяется соответствующей величиной магнитного потока, поступающего тока и сдвигом между параметрами ЭДС, тока в роторе. Зависимость момента скольжения и напряжения с частотой устанавливается в ходе проведения исследования технических характеристик производителями электромоторов.
Читать еще:  Что делают форсунки в двигателе

Определение величины скольжения электродвигателя

Предопределяющим моментом в прямой зависимости от скольжения является начальное значение того момента, когда электродвигатель остается еще в неподвижном состоянии. Максимальное значение скольжения называется критическим.

Конкретные расчеты производят специалисты завода-изготовителя, и они указаны в соответствующих технических характеристиках, прилагаемых к электродвигателю при покупке. При увеличении активного сопротивления только ротора увеличивается значение критического скольжения и уменьшается скорость вращения вала. Изменить данные параметры можно путем использования дополнительного сопротивления, которое вводится в цепь обмотки ротора.

Расчет ЭДС и токов асинхронных двигателей

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

ПРАКТИЧЕСКАЯ РАБОТА №6

« Расчет ЭДС и токов асинхронных двигателей »

ЦЕЛЬ РАБОТЫ: рассчитать значение скольжения, ЭДС асинхронного двигателя и величину протекающих в нем токов.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

В соответствии с принципом обратимости электрических машин асинхронные машины могут работать как в двигательном, так и в генераторном режимах. Кроме того, возможен еще и режим электромагнитного торможения противовключением.

Двигательный режим. При включении обмотки статора в сеть трехфазного тока возникает вращающееся магнитное поле, которое, сцепляясь с короткозамкнутой обмоткой ротора, наводит в ней ЭДС. При этом в стержнях обмотки ротора появляются токи. В результате взаимодействия этих токов с вращающимся магнитным полем на роторе возникают электромагнитные силы. Совокупность этих сил создает электромагнитный вращающий момент, под действием которого ротор асинхронного двигателя приходит во вращение с частотой n 2 Весьма важным параметром асинхронной машины является скольжение — величина, характеризующая разность частот вращения ротора и вращающегося поля статора:

S = ( n 1 n 2)/ n 1 (формула 6.1)

Скольжение выражают в долях единицы либо в процентах. В последнем случае величину, полученную по (6.1), следует умножить на 100.

С увеличением нагрузочного момента на валу асинхронного двигателя частота вращения ротора n 2 уменьшается. Следовательно, скольжение асинхронного двигателя зависит от механической нагрузки на валу двигателя и может изменяться в диапазоне 0 s ≤ 1.

Скольжение, соответствующее номинальной нагрузке двигателя, называют номинальным скольжением s hom . Для асинхронных двигателей общего назначения s hom = 18%, при этом для двигателей большой мощности s ном = 1%, а для двигателей малой мощности s ном = 8%.

Формула для определения асинхронной частоты вращения (об/мин):

n 2 = n 1(1- s ). (формула 6.2)

Пример 6.1. Трехфазный асинхронный двигатель с числом полюсов 2р = 4 работает от сети с частотой тока f 1 = 50 Гц. Определить частоту вращения двигателя при номинальной нагрузке, если скольжение при этом составляет 6%.

Решение. Синхронная частота вращения по (6.9) n 1 = f1 60/ р = 50 • 60/4 = 1500 об/мин.

Номинальная частота вращения по (6.2): n ном = n 1(1 — s ном ) = 1500(1 — 0,06) = 1412 об/мин.

Генераторный режим. Если обмотку статора включить в сеть, а ротор асинхронной машины посредством приводного двигателя ПД (двигатель внутреннего сгорания, турбина и т. п.), являющегося источником механической энергии, вращать в направлении вращения магнитного поля статора с частотой n 2 > n1, то направление движения ротора относительно поля статора изменится на обратное (по сравнению с двигательным режимом работы пой машины), так как ротор будет обгонять поле статора. При этом скольжение станет отрицательным, а ЭДС, наведенная в обмотке ротора, изменит свое направление. Электромагнитный момент на роторе М также изменит свое направление, т. е. будет направлен встречно вращающемуся магнитному полю статора и станет тормозящим по отношению к вращающемуся моменту приводного двигателя М1. В этом случае механическая мощность приводного двигателя в основной своей части будет преобразована в электрическую активную мощность Р2 переменного тока. Особенность работы асинхронного генератора состоит в том, что вращающееся магнитное поле в нем создается реактивной мощностью Q трехфазной сети, в которую включен генератор и да он отдает вырабатываемую активную мощность Р2. Следовательно, для работы асинхронного генератора необходим источник переменного тока, при подключении к которому происходит возбуждение генератора.

Скольжение асинхронной машины в генераторном режиме может изменяться в диапазоне — ∞ s I 1 μ = (формула 6.3)

Исходным параметром при расчете магнитной цепи асинхронного двигателя является максимальная магнитная индукция в воздушном зазоре Вδ. Величину Вδ принимают по рекомендуемым значениям в зависимости от наружного диаметра сердечника статора D 1нар и числа полюсов 2р.

Магнитная индукция Вδ определяет магнитную нагрузку двигателя: при слишком малом Вδ магнитная система двигателя недогружена, а поэтому габаритные размеры двигателя получаются неоправданно большими; если же задаться чрезмерно большим течением Вδ, то резко возрастут магнитные напряжения на участках магнитной системы, особенно в зубцовых слоях статора и рот opa , в результате возрастет намагничивающий ток статора I снизится КПД двигателя.

Расчет магнитной цепи асинхронного двигателя. Расчет магнитной цепи электрической машины состоит в основном в определении магнитных напряжений для всех ее участков. Магнитное напряжение F x для любого участка магнитной цепи равно произведению напряженности поля на этом участке Нх на его длину l Х.

Участки магнитной цепи различаются конфигурацией, размерами и материалом. Наибольшее магнитное напряжение в воздушном зазоре δ. Напряженность магнитного поля в воздушном зазоре

H δ = Bδ/ μ0, где μ0 = 4π/ 10 -7 Гн/м. Расчетная длина зазора l δ = δk δ , где k δ , — коэффициент воздушного зазора, учитывающий увеличение магнитного сопротивления зазора, вызванное зубчатостью поверхностей статора и ротора, ограничивающих воздушный зазор в асинхронном двигателе ( k δ > 1). Учитывая это, получим выражение магнитного напряжения воздушного зазора (А):

F δ = 0,8 Bδ δ k δ 10 3 . (формула 6.4)

где δ — значение одностороннего воздушного зазора, мм.

Обычно магнитное напряжение двух воздушных зазоров, входящих в расчетную часть магнитной цепи асинхронного двигателя, составляет — 85% от суммарной МДС на пару полюсов . Из этого следует, насколько значительно влияние величины воздушного зазора δ на свойства двигателя. С увеличением δ МДС значительно возрастает, что ведет к увеличению намагничивающего тока статора I , а, следовательно, ведет к росту потерь и снижению КПД двигателя. И наоборот, с уменьшением δ уменьшается , что ведет к росту КПД, т. е. двигатель становится более экономичным в эксплуатации. Однако при слишком малых зазорах δ усложняется изготовление двигателя (он становится менее технологичным), так как требует более высокой точности при обработке деталей и сборке двигателя. При этом снижается надежность двигателя – возрастает вероятность возникновения неравномерности зазора и, как следствие, вероятность задевания ротора о статор.

Пример 6.2. Воздушный зазор трехфазного асинхронного двигателя δ = 0,5 мм, максимальное значение магнитной индукции Вδ = 0,9 Тл. Обмотка статора четырехполюсная, число последовательно соединенных витков в обмотке одной фазы ω1 = 130, обмоточный коэффициент k об1 = 0,91. Определить значение намагничивающего тока обмотки статора I 1μ, если коэффициент воздушного зазора k δ = 1,38, а коэффициент магнитного насыщения k μ = 1,4.

Магнитное напряжение воздушного зазора по (6 .4)

F δ = 0,8 В δ δ k δ • 10 3 = 0,8 • 0,9 • 0,5 • 1,38 • 10 3 = 497 A .

Так как коэффициент магнитного насыщения k μ = ном / (2 F δ ), то МДС обмотки статора в режиме х.х. на пару полюсов ном = 2 F δ k μ =2 • 497 • 1,4 = 1392 А.

Намагничивающий ток статора по (6.3)

I 1 μ = p ном / (0,9 m 1 ω 1 k об1) = 2 • 1392 / (0,9 • 3 • 130 • 0,91) = 8,7 A

Если воздушный зазор данного двигателя увеличить на 20%, т. е. принять δ = 0,6 мм (при прочих неизменных условиях), то намагничивающий ток статора станет равным I 1 μ = 10,4 А, т. е. он возрастет пропорционально увеличению воздушного зазора.

Электродвижущие силы, наводимые в обмотке ротора. Асинхронный двигатель аналогичен трансформатору, у которого вторичная обмотка (обмотка ротора) вращается. При этом вращающийся магнитный поток сцепляется не только с обмоткой статора, где индуцирует ЭДС Е и но и с обмоткой вращающегося ротора, где индуцирует ЭДС. В процессе работы асинхронного двигателя ротор вращается в сторону вращения поля статора с частотой n 2. Поэтому частота вращения поля статора относительно ротора равна разности частот вращения ( n 1 – n 2). Основной магнитный поток Ф, обгоняя ротор с частотой вращения n s = ( n 1 — n 2), индуцирует в обмотке ротора ЭДС

Е2 = 4,44 f 2 Ф ω2 коб2 (формула 6.5)

где f 2— частота ЭДС Е2 s в роторе, Гц; ω2 — число последовательно соединенных витков одной фазы обмотки ротора; k o 62 — обмоточный коэффициент обмотки ротора.

Частота ЭДС (тока) в обмотке вращающегося ротора пропорциональна частоте вращения магнитного поля относительно ротора n s = n 1 — n 2, называемой частотой скольжения:

f 2 = pn s / 60 = p(n 1 – n 2 ) / 60,

f 2 = = = f 1 s (формула 6.6)

т. е. частота ЭДС (тока) ротора пропорциональна скольжению. Для асинхронных двигателей общепромышленного назначения эта частота обычно невелика и при f 1 = 50 Гц не превышает нескольких герц, так при s = 5% частота f 2 = 50 0,05 = 2,5 Гц.

E 2s = 4,44 f 1 s Ф ω 2 k об 2 = E 2 s . (формула 6.7)

Здесь Е2 — ЭДС, наведенная в обмотке ротора при скольжении s = 1, т. е. при неподвижном роторе, В.

Уравнения МДС и токов асинхронного двигателя. МДС обмоток статора и ротора на один полюс в режиме нагруженного двигателя

F 1 = 0,45 m 1 I 1 ω 1 k об 1 / P

F 2 = 0,45 m 2 I 2 ω 2 k об 2 / P ( формула 6.8)

где m2 — число фаз в обмотке ротора; k o 62 — обмоточный коэффициент обмотки ротора.

С подключением нагрузки в фазах обмотки статора появляются токи I А, I B , I C . При этом трехфазная обмотка статора создает вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора (об/мин):

n 1 = f 160/ p . (формула 6.9)

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

Решить задачу №1. В табл. 6.1 приведены данные следующих параметров трехфазного асинхронного двигателя с короткозамкнутым ротором: основной магнитный поток ф, число последовательно соединенных витков в обмотке статора, номинальное скольжение , ЭДС, индуцируемая в обмотке ротора при его неподвижном состоянии , и ЭДС ротора при его вращении с номинальным скольжением E 2 s , частота этой ЭДС f 2 при частоте вращения ротора n ном. Частота тока в питающей сети 50 Гц. Требуется определить значения параметров, не указанные в таблице в каждом из вариантов.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию