В чем особенности шагового двигателя
Принципиальные особенности и применение шаговых двигателей.
Шаговый двигатель – это электродвигатель постоянного тока, без контактных щеток, у которого полный оборот делится на определенное число равных шагов. Положение данного устройства может затем быть задано для перемещения и удержания на одном из этих этапов без какого-либо датчика положения для обратной связи (контроллер с разомкнутым контуром), при условии, что механизм тщательно подобран для применения в отношении крутящего момента и скорости. Импульсные двигатели с переключением — это очень большие шаговые приборы с уменьшенным числом полюсов и, как правило, с замкнутым контуром.
По мере вращения шагового двигателя индуктивность каждой обмотки колеблется через пики и падает несколько раз за оборот. Крутящий момент генерируется по мере того, как под напряжением обмотка перемещается от вершины к долине, вызывая уменьшение энергии, запасаемой в ее магнитном поле. Это снижение энергии поля непосредственно переводится на механическую работу.
Области применения
От простых DVD плееров или принтеров в быту до сложнейших станков с ЧПУ или роботизированной руки шаговые двигатели можно найти практически везде. Способность совершать точные движения с электронным управлением позволила этим устройствам найти применение во многих сферах, таких как камеры наблюдения, жесткие диски, станки с ЧПУ, 3D-принтеры, робототехника, сборочные роботы, лазерные резаки и многое другое.
Перед тем, как купить шаговый двигатель, нужно ознакомиться с основными преимуществами и недостатками:
Преимущества
- Достигнута низкая стоимость контроля;
- Высокий момент вращения при запуске и низкая скорость;
- Простота конструкции;
- Низкие эксплуатационные расходы;
- Меньше шансов затормозить или поскользнуться;
- Будет работать в любой среде;
- успешно используется в робототехнике в широком масштабе;
- Высокий уровень надежности;
- Обладает полным крутящим моментом в состоянии покоя (во время нахождения обмоток под напряжением);
- Большая точность позиционирования и повторяемость движения;
- Немедленный ответ на запуск / останов / реверс;
- Обладает высокой степенью надежности, благодаря отсутствию контактных щеток;
Недостатки шагового двигателя
- Потребляет большее количество энергии по сравнению с двигателями постоянного тока;
- При более высокой скорости значение крутящего момента уменьшается;
- Снижение эффективности;
- Возникает состояние резонанса;
- На высокой скорости управление невозможно.
Понравилась статья пишите в комментарии или на форум. Подписывайтесь на мой канал на Youtube и вступайте в группы в Вконтакте и Facebook.
Понравилась статья? Поделитесь ею с друзьями:
Разница между бесщеточным двигателем и шаговым двигателем
Я думаю, что понимаю принципы работы бесщеточного двигателя и шагового двигателя, но меня немного смущает разница. Является ли бесщеточный двигатель постоянного тока очень простым шаговым двигателем? При правильном управлении можно ли использовать бесщеточный двигатель постоянного тока в качестве шагового двигателя? Если нет, то чем они отличаются?
Для новичка в области электроники кто-то может выделить сходства и различия между шаговыми двигателями и бесщеточными двигателями постоянного тока?
Два в основном одинаковы, по сути. Тем не менее, они отличаются по назначению. Шаговый двигатель предназначен для работы, в частности, в ступенях. Мотор BLDC предназначен для обеспечения плавного движения.
Поскольку для управления движением используются шаговые двигатели, желательна повторяемость шагов. То есть, если вы начнете с одного шага, затем с другого, а затем с первого шага, он в идеале должен вернуться именно туда, где он был ранее. Различные вещи могут испортить это; провалы в подшипниках, трение и т. д. Двигатели BLDC оптимизированы для обеспечения плавного крутящего момента между ступенями, а не повторяемости.
Шаговые двигатели предназначены для максимизации удерживающего момента , способности шагового двигателя удерживать механическую нагрузку на одном из этапов. Это достигается поддержанием высокого тока обмотки, даже если ротор выровнен со статором. Это тратит много энергии, потому что не генерирует крутящий момент, если нагрузка не пытается повернуть со своего положения, но при этом не требуется какой-либо механизм обратной связи.
С другой стороны, BLDC обычно работают с ротором, отстающим от статора, так что приложенный ток всегда генерирует максимальный крутящий момент, что и делал бы щеточный двигатель. Если требуется меньший крутящий момент, то ток уменьшается. Это более эффективно, но нужно знать положение нагрузки, чтобы знать, какой крутящий момент нужно приложить. Следовательно, шаговые двигатели, как правило, больше по размеру, чтобы обеспечить дополнительный нагрев при работе двигателя при максимальном токе все время.
Кроме того, в большинстве случаев люди ожидают, что степпер будет способен выполнять небольшие шаги для точного управления движением. Это означает большое количество магнитных полюсов. Шаговый двигатель обычно имеет сотни шагов на оборот. У BLDC обычно будет намного меньше. Например, недавно я играл с BLDC с жесткого диска, и у него было четыре «шага» на оборот.
Шаговые двигатели обычно рассчитаны на максимальный удерживающий момент, а на скорость — на второй. Обычно это означает, что обмотки имеют очень много оборотов, что создает более сильное магнитное поле и, следовательно, больший крутящий момент на единицу тока. Однако это происходит за счет увеличения противо-ЭДС, что снижает скорость на единицу напряжения.
Кроме того, шаговые двигатели обычно приводятся в движение двумя фазами, разнесенными на 90 градусов, в то время как BLDC обычно имеют три фазы, составляющие 120 градусов (хотя в обоих случаях есть исключения):
шаговый двигатель
BLDC
Несмотря на эти различия, степпер может работать как BLDC, или BLDC как степпер. Однако, учитывая противоречивые намерения проекта, результат, вероятно, будет менее чем оптимальным.
В чем особенности шагового двигателя
Комплексные поставки комплектующих для ЧПУ и автоматизации
Расчёт проекта
Консультация
Устройство шагового двигателя и его управление
Устройство шагового двигателя и управление им
Шаговый двигатель (ШД)- это бесколлекторный синхронный электромотор, оснащённый несколькими обмотками. Подача напряжения на одну из обмоток статора вызывает остановку ротора. При последовательной активации обмоток ротор начинает дискретно поворачиваться. То есть, ротор совершает отдельные угловые перемещения – шаги. Отсюда и название этого типа электродвигателей.
Управление шаговым двигателем гораздо более сложное, нежели стандартным коллекторным аналогом. Сложность определяется необходимостью переключения в строгой последовательности напряжения в обмотках. При этом нужно ещё контролировать и силу тока. Обычно ШД управляются с помощью устройств, называемых драйверами.
Типы шаговых двигателей
Конфигурация обмоток определяет деление ШД на биполярные и униполярные.
У биполярного двигателя одна обмотка на каждую фазу. Всего их в биполярном двигателе две. Выводов, соответственно, четыре. Для изменения направления силовых линий магнитного поля драйвер переполюсовывает обмотку.
Типы шаговых двигателей
Конфигурация обмоток определяет деление ШД на биполярные и униполярные.
У биполярного двигателя одна обмотка на каждую фазу. Всего их в биполярном двигателе две. Выводов, соответственно, четыре. Для изменения направления силовых линий магнитного поля драйвер переполюсовывает обмотку.
Аналогично описанному устройству на каждую фазу униполярного двигателя также приходится одна обмотка. Отличием является отвод из середины обмотки. Это решение позволяет изменять направление силовых линий магнитного поля, просто переключая части обмотки. Выводы из срединной части обмоток иногда объединяются внутри корпуса мотора, поэтому выводов может насчитываться и пять, и шесть.
В ряде случаев униполярные двигатели оснащаются четырьмя раздельными обмотками. Из-за этого неопытные пользователи часто неправильно называют эти моторы 4-х фазными. От каждой обмотки идут свои выводы, и поэтому общее их количество равняется восьми. Такой ШД при соответствующей схеме соединения обмоток может стать как биполярным, так и униполярным. Нижеприведённые иллюстрации наглядно демонстрируют этот момент. На рис. а) изображена схема биполярного ШД, на рис. б) – схема униполярного, на рис. в) четырёхобмоточного.
Эксплуатационные свойства ШД
Шаговые двигатели как компоненты, используемые в автоматизации станков, обладают рядом важных эксплуатационных свойств, к которым относятся следующие.
1. Дискретность перемещений.
Это главное свойство, определяющее все остальные параметры шагового двигателя. Львиная доля шаговых двигателей выполняет 200 или 400 шагов за один оборот ротора. Однако благодаря возможности промежуточной фиксации ротора можно добиваться увеличенного количества шагов до 800 и более. В сверхточных моделях число дискретных перемещений может достигать 10 тысяч шагов за оборот.
2. Ограничения в точности установки ротора.
Погрешность установки ротора в большинстве выпускаемых сегодня ШД составляет 5% от размера шага. Таким образом, при шаге в 1.8° неточность установки будет равняться примерно 5.4´. На практике, при дроблении шага, например, 1 к 10, шаг будет равен погрешности установки, причём, увеличение количества делений не приведёт к повышению точности перемещения. Единственное, в чём это может оказаться эффективным, – в обеспечении плавности перемещения ротора.
3. Соотношение крутящего момента и скорости вращения ротора.
С большой степенью приближения можно говорить о том, что значение произведения момента и скорости вращения вала шагового двигателя является постоянным. При возрастании скорости вращения ротора величина крутящего момента уменьшается пропорционально.
Достоинства шаговых электродвигателей
В число основных достоинств, определяющих широкое применение этого типа электрических двигателей, входят следующие.
1. Зависимость угла поворота ротора от количества импульсов, поданных на обмотку двигателя.
2. Обеспечение полного момента при остановке двигателя (при подаче питания на обмотки).
3. Повторяемость. Точность шаговых двигателей составляет от 3 до 5% величины шага, причём, ошибка от шага к шагу не накапливается.
4. Быстрый старт, мгновенная остановка, минимальное время переключения на реверс.
5. Надёжность, обусловленная отсутствием щёток. В общем случае длительность срока исправной службы двигателя зависит только от надёжности подшипников.
6. Жёсткая зависимость положения ротора от входного сигнала позволяет позиционировать ротор, не прибегая к использованию обратной связи.
7. Возможность вращения полезной нагрузки, присоединенной напрямую к валу электромотора без редуктора, с предельно малой скоростью.
8. Широкий интервал скоростей.
9. Более доступная цена в сравнении с сервоприводами.
Недостатки шаговых электродвигателей
Однако при всех положительных моментах существует и ряд недостатков, присущих шаговым электрическим моторам. Их краткий перечень:
- возникновение резонансных явлений при функционировании;
- вероятность пропуска шагов, что из-за отсутствия обратной связи приводит к невозможности контроля положения ротора;
- снижение момента и потеря стабильности при высокой скорости;
- малое значение удельной мощности.
Организация управления шаговым двигателем
Наиболее простым вариантом является следующий.
В составе двигателя 4 электромагнитные катушки A, B, C и D. Если подавать на них напряжение, то они превращаются в магниты. При этом катушки А и В активны при протекании тока в прямом направлении, а C и D — в обратном. Предположим, что полезной нагрузкой для данного двигателя является зубчатое колесо, зубчики которого притягиваются к катушкам при подаче на них напряжения.
Таким образом, при последовательном включении тока в катушках колесо начнёт вращаться. Для обеспечения плавности движения в общем случае можно увеличить либо число зубчиков, либо количество катушек. Принцип управления мотором при этом останется неизменным. Изменяться будут лишь усилие и угол поворота за один цикл включения-отключения питания. В обычных условиях применяется такая конфигурация, когда располагают по четыре катушки вдоль траектории вращения, и на каждую группу катушек приходится по зубчику. Система выглядит как шестерня, окружённая катушками.
Для простоты понимания принципа управления рассмотрим упрощённую модель – 4 катушки и 1 зубчик (стрелка на колесе). Предположим, что перед включением двигателя зубчик находился возле катушки D.
1. Самое очевидное решение для запуска вращения – подать питание на катушку А. Колесо провернётся, и стрелка замрёт возле этой катушки. Отключаем А и подаём питание на В. Стрелка движется к В и встаёт рядом с этой катушкой. Отключаем В, и подключаем C. Стрелка останавливается около неё. Отключаем C, включаем D – стрелка останавливается на D. Отключаем D, включаем A, и процесс повторяется.
За каждый цикл включения-отключения питания колесо поворачивается на угол в 90°. Следовательно, на полный круг потребуется четыре цикла, что обуславливает довольно высокую угловую скорость. Если масса колеса будет высокой, то скоростной поворот вызовет возникновение значительной инерции. Инерционное ускорение может снизить точность поворота колеса, так как разогнавшееся колесо не сможет остановиться мгновенно. Всё это может привести к потере контроля вращения, а при самом неблагоприятном сценарии к отрыву колеса и разрушению системы.
Достоинством данного принципа управления является сравнительная простота реализации.
2. Не таким очевидным, но достаточно эффективным является следующее решение. Подаём питание на катушки А и D. Колесо проворачивается, и стрелка фиксируется между А и D. Отключаем D, подключаем В. Стрелка замирает между катушками А и В. Отключаем А, подключаем C. Стрелка встаёт между В и C. Отключаем В, подключаем D. Стрелка между C и D. Отключаем C, подключаем А. Стрелка фиксируется между D и А. Далее процесс повторяется. За один цикл включения-отключения те же 90°, полный круг за те же четыре цикла. Кажется, что всё то же самое? Однако отличием является увеличенный крутящий момент, поскольку «в силе» оказывается одновременно две катушки. Следовательно, пороговое значение скорости, при которой инерция становится неуправляемой, повышается, что выгодно отличает этот принцип от первого.
3. Дробление шага. Допустим, что реализована схема не только включения и отключения катушек, а и подачи на них промежуточных значений напряжения питания – 0, 25, 50, 75, 100%. При этом схема подаёт питание в такой последовательности (для пары A и C):
C100%, А 0% – C 75%, А 25% – C 50%, А 50% – C 25%, А 75% – C 0% и А 100%.
По тому же правилу напряжение питания подаётся на пары катушек А-В, В-D, D-Cи C-В.
Дробление шага позволяет снизить уровень шума и избавиться от дребезжания. Кроме того, обеспечивается плавность движения. Инерция пренебрежимо мала, и управление не теряется. Недостатком является сложность реализации.
4. Подача напряжения аналоговым способом. Концептуально принцип напоминает дробление шага на бесконечное количество положений. Напряжение, подаваемое на катушку C, плавно снижаем со 100% до 0. Для катушки А напряжение, напротив, плавно увеличиваем с 0% до 100. Точно так же поступаем с парами А-В, В-C, C-Dи D-В. Обеспечивается плавное вращение, надёжный контроль, отличный крутящий момент. Главный недостаток – отсутствие точности, присущее аналоговым схемам.
5. Этот принцип обеспечивает более высокий крутящий момент. Реализуется он следующим образом. Подключается D и А: стрелка между D и А. Выключаем D: стрелка у А. Включаем В: стрелка между А и В. Выключаем А: стрелка у В. Включаем: стрелка между C и В. Выключаем В: стрелка у C. Включаем D: стрелка между D и C. Отключаем C – стрелка находится у D. Подключаем А – стрелка перемещается в точку между D и А. Процесс повторяется. Отличается от вышеописанного способа дробления шага (п.3) более высоким крутящим моментом.
Принципы 1, 2, 3 и 5 являются типовыми и применяются очень часто. Для них разработаны даже свои обозначения. Если принять положение «рядом с катушкой» за 1, а положение «между катушками» за 2, то обозначения будут следующими.
1 – «1 phase» (полношаговый). Стрелка фиксируется лишь на фазе «1». Данный метод используется редко, поскольку при нём обеспечивается недостаточный крутящий момент.
2 – «2 phase» (полношаговый). Стрелка фиксируется лишь на фазе «2».
3 – так как число фаз зависит от частоты дробления шага, то обозначений существует несколько. Например, «4: 2W1-2 phase» (2×2=4) обозначает, что переход из положения «перед катушкой» в «перед следующей катушкой» выполняется за 4 шага. А обозначение «8: 4W1-2 phase» (4×2=8) расшифровывается так же, только количество шагов равняется 8. Иначе такой механизм называется микрошаговым.
5 – «1-2 phase» (полушаговый). Стрелка фиксируется на обеих фазах – на «1» и «2».
Шаговой двигатель для ЧПУ: как определиться с выбором?
Шаговый двигатель понадобится любому человеку, который собрался самостоятельно собрать станок с ЧПУ. Главное – заранее определиться со сферой применения устройства. Наибольших усилий и показателей требует обработка цветных металлов, что отдельно учитывается при выборе шагового двигателя для ЧПУ.
Шаговый двигатель понадобится любому человеку, который собрался самостоятельно собрать станок с ЧПУ. Главное – заранее определиться со сферой применения устройства. Наибольших усилий и показателей требует обработка цветных металлов, что отдельно учитывается при выборе шагового двигателя для ЧПУ.
Какие критерии определяющие для выбора?
Надо помнить о том, что, по сравнению с обычными двигателями, шаговые требуют более сложных схем для управления. А критериев не так уж много.
- Параметр индуктивности.
Первый шаг – определение квадратного корня из индуктивности обмотки. Результат потом умножаем на 32. Значение, полученное в качестве итога, потом требуется сравнивать с напряжением источника, от которого питание идёт к драйверу.
Эти числа не должны отличаться друг от друга слишком сильно. Мотор будет греться и шуметь слишком сильно, если напряжение питания больше полученного значения на 30 и больше %. Если же он меньше, то, по мере нарастания скорости, крутящий момент убывает. Чем больше индуктивность – тем проще сохранить высокий крутящий момент. Но для этого надо подобрать драйвер, имеющий большое напряжение питания. Только в этом случае шаговой двигатель работает нормально.
- График того, как крутящий момент и скорость зависят друг от друга.
Это позволит понять, насколько двигатель в принципе соответствует запросам и техническому заданию.
- Параметры геометрического плана.
Особое внимание рекомендуется уделить диаметру вала, фланцу и длине двигателя.
Кроме того, следующие показатели так же рекомендуется внимательно изучить:
- Максимальный статический синхронизирующий момент.
- Момент по инерции у роторов.
- Ток внутри фазы по номиналу.
- Общее сопротивление фаз омического типа.
О разновидностях двигателей
Для станка используемая разновидность шаговых двигателей – параметр не менее важный, чем остальные. Каждая модель наделена своими особенностями.
- Биполярные чаще всего применяются совместно с ЧПУ.
Главное достоинство – возможность легко выбрать новый драйвер, если старый выходит из строя. На малых оборотах при этом сохраняется высокое удельное сопротивление.
Для них характерна высокая скорость. Актуальны, если именно данному параметру уделяют больше всего внимания в случае выбора.
Это несколько видов биполярных двигателей, которые отличаются друг от друга и подбираются в зависимости от подключения обмотки.
Можно изучить готовые модели станков, предлагаемые текущим рынком. Благодаря подобному подходу выбор значительно упрощается. Главное – чтобы характеристики и размеры подходили к создаваемому проекту.
Об усилиях резания
Часто владельцы думают, что на фрезу агрегата надо сильно давить, иначе она будет неправильно работать. Это заблуждение, которое не соответствует истине. Важнее всего то, как правильно пользователь задаёт параметры рабочего процесса.
Не обязательно пользоваться сложными специальными формулами, чтобы понять, как правильно действовать. Это можно проверить и прямо голыми руками.
По поводу резонанса при средних частотах
Шаговые двигатели связаны с возникновением сильного резонанса. По сути, они работают, как маятник с подвешенным на пружине грузиком. Роль груза выполняет ротор, а поле с магнитной энергией – пружина. Собственные колебания имеют частоту, определяемую по двум показателям:
- Инерция ротора.
- Сила тока.
Резонанс появляется, когда разность между скоростью и фазностью момента достигает 180 градусов. Это означает, что присутствует соответствие скорости и изменений внутри магнитного поля. Движение становится быстрым при позиционировании по новому шагу. Крутящий момент падает из-за того, что больше всего энергии уходит, чтобы преодолеть инерцию.
Об энкодерах и драйверах, подключениях
Специальные драйверы нужны для того, чтобы управлять устройством. Они подключаются к LTP портам у персональных компьютеров. От программы идёт генерация сигналов, которые потом принимаются драйверами. После чего двигатель и получает определённые команды. Подача тока на обмотки позволяет организовать работу всего устройства. Программное обеспечение облегчает контроль:
- По двигательной величине.
- Для скоростей.
- По траекториям.
Драйвер – это блок, отвечающий за управление всем двигателем. Формирование управляющего сигнала происходит при участии специального контроллера. Что предполагает подключение к устройству сразу четырёх выводов шагового двигателя. С блока питания идёт энергия, отрицательная и положительная, она и соединяется с моторами для дальнейшей работы.
С контроллера ПУ сигналы идут к драйверу. Далее организуется управление процессом, во время которого переключаются ключи, составляющие схему с питающим напряжением. Последнее идёт с блока питания, на двигатель, проходя по ключам.
Дополнительные рекомендации по выбору
Максимум по току требуемого напряжения, идущего к выводам – главный фактор, на основании которого следует делать выбор. Ток, выдаваемый драйвером, может быть следующих типов:
- Такой же, что потребляет двигатель.
- Выше, чем упомянутое ранее значение.
Желаемые параметры по исходному напряжению выбираются при помощи специальных переключателей.
Шаговые двигатели могут иметь различный порядок подключения. Обычно он зависит от того, каким количеством проводов снабжён привод. Надо обратить внимание и на назначение устройства. На рынке выпускается множество моделей, и практически у каждой используется свой вариант подключаемой схемы. Внутри размещается до 4-6 проводов. Биполярные модули сопровождают стандартно именно варианты с четырьмя проводами.
Каждые две обмотки идут с двумя приводами. Нужно использовать обычный метр, чтобы не допустить ошибок. Шестипроводные двигатели отличаются максимальной мощностью. Это значит, что каждая обмотка сопровождается двумя проводами и одним центр-краном. Такие аппараты допускают два вида соединений:
- С биполярными аппаратами.
- С униполярными моделями.
Для разделения проводов так же применяются приборы измерения. Однополярные устройства предполагают, что используются все шесть проводов. В случае с биполярными можно взять всего один центральный кран вместе с проводами по одной обмотке.
Что ещё учесть?
Центр-краном называют обычный провод. Ещё для него используют обозначения «центральный», «средний». Часть моделей шаговых двигателей снабжаются подобными приспособлениями. Каждая обмотка идёт совместно с тремя проводами, когда речь идёт об униполярных вариантах. Два из них организуют соединение с транзисторами. Центр-кран или средний идёт прямо до источника питания или напряжения.
Два боковых провода вообще можно игнорировать, если транзисторы использовать не планируется.
Пяти- и шестипроводные модели во многом похожи друг на друга. Но внутри центральные провода выводятся в один общий кабель, вместе с остальными составляющими. Обмотки не удастся соединить друг с другом, если будут отсутствовать разрывы. Лучше всего именно средний провод соединять с другими проводниками. Тогда об эффективности и безопасности устройства можно будет не волноваться. Нужно просто брать подходящие детали.
Заключение
Подобрать подходящую модель двигателя для станка будет проще, если заранее изучить основные характеристики, а так же предложения на соответствующем рынке. Главное – обращаться к поставщикам, которые заслуживают доверия. Малейший брак и ошибка приведут к выходу из строя весьма дорогостоящих деталей.