14 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В какую сторону крутится асинхронный двигатель

§ 3.8. Асинхронный электродвигатель

Чтобы понять основную идею конструкции и действия этих двигателей, обратимся к опыту (рис. 3.24). Если дугообразный магнит привести во вращение, то помещенный в это поле замкнутый проволочный виток тоже придет во вращение в ту же сторону, в какую вращается магнит. Объяснить опыт можно следующим образом. Так как магнит вращается, то создаваемое им магнитное поле тоже приходит во вращение. При вращении поля изменяется магнитный поток через виток, поэтому в витке индуцируется ток. Взаимодействие индукционного тока с магнитным полем вращающегося магнита вызывает вращение витка.

Согласно правилу Ленца индукционный ток в витке противодействует изменению магнитного потока через виток, т. е. противодействует вращению поля. Но замедлить вращение магнитного поля он не может, так как оно определяется внешней механической силой. Поэтому виток сам вращается в сторону вращения поля.

При наличии трехфазного тока очень легко получить вращающееся магнитное поле без механического вращения магнита, что используется в асинхронном электродвигателе.

Устройство асинхронного электродвигателя

Асинхронный электродвигатель (рис. 3.25) состоит из двух главных частей: неподвижной части — статора 1 и вращающейся части — ротора 2.

Статор электродвигателя набирается из отдельных стальных листов (рис. 3.26), которые изолируются друг от друга и образуют конструкцию, показанную на рисунке 3.27. На внутренней поверхности статора в пазах укладывается обмотка.

Ротор электродвигателя тоже набирается из стальных листов (рис. 3.28), которые закрепляются на валу (рис. 3.29).

В пазы ротора укладываются медные стержни, которые на торцовых частях соединяются друг с другом медными кольцами, образуя обмотку, называемую «беличьим колесом» (рис. 3.30).

Обмотка статора трехфазного асинхронного электродвигателя в простейшем случае состоит из трех катушек, повернутых друг относительно друга на 120° (рис. 3.31). Эти катушки соединяются звездой или треугольником и включаются в сеть трехфазного тока.

Вращающееся магнитное поле

По трем обмоткам (катушкам) статора (см. рис. 3.31) проходят токи трехфазной системы, сдвинутые по фазе на 2π/3. Эти токи образуют три переменных магнитных поля. Так как в любой момент времени модуль В индукции магнитного поля пропорционален силе тока в катушке i, то изменения модуля индукции магнитного поля любой катушки происходят по тому же закону, по которому изменяется сила тока в ней.

Мгновенные значения индукций магнитных полей каждой из трех катушек в произвольный момент времени t выражаются уравнениями:

Векторы A, B и C, колеблются вдоль осей симметрии обмоток статора (рис. 3.32). (На рисунке 3.32, как и на рисунке 3.31, каждая обмотка (катушка) статора показана схематически в виде одного витка. Ротор внутри статора показан в виде круга без обмотки.)

Для нахождения магнитной индукции результирующего поля проведем две взаимно перпендикулярные координатные оси Ох и Оу, направив ось Ох вдоль вектора ВA. Найдем проек-ции векторов A, B и C на координатную ось Ох:

Определим теперь проекцию на ось Ох вектора индукции результирующего поля:

To же самое с заменой синуса на косинус имеет место для проекции Вy:

Зная проекции Вx и By с помощью теоремы Пифагора найдем модуль вектора в данный момент времени t:

При t = О (в начальный момент) Вx = О, а Вy = Вm. Следовательно, в начальный момент времени направление вектора индукции результирующего магнитного поля совпадало с направлением оси Оу. Поворот вектора за время t определяется углом α:

Таким образом, при прохождении трехфазного тока по обмоткам (катушкам) статора асинхронного электродвигателя модуль вектора индукции резулътирующего магнитного поля не изменяется и равен Bm, где Bm — амплитуда индукции магнитного поля одной катушки. Сам же вектор вращается в плоскости осей катушек с угловой скоростью ω.

В рассмотренном случае вектор магнитной индукции вращается по часовой стрелке (см. рис. 3.32). Но если поменять местами два любых провода, питающих электродвигатель, то магнитное поле (вектор ) будет вращаться в противоположном направлении. Это вы можете доказать самостоятельно.

В рассмотренном примере, когда обмотка статора состоит из трех катушек, повернутых друг относительно друга на 120°, вектор вращается с угловой скоростью ω, равной циклической частоте переменного тока. Одному периоду тока соответствует один оборот магнитного поля. Но если взять, например, шесть катушек, соединить их попарно последовательно и расположить в пазах статора так, как показано на рисунке 3.33, то при прохождении по ним трехфазного тока магнитное поле будет вращаться в два раза медленнее. Это можно строго доказать. Но понять его легко из следующих простых рассуждений.

Когда обмотка статора состоит из трех катушек, они занимают всю окружность статора (360°) и вектор магнитной индукции за период поворачивается на 360°. При наличии же шести катушек они сдвинуты относительно друг друга на 60°, и комплект катушек АХ, BY, CZ занимает одну половину окружности статора (180°), а другую половину занимают катушки А’Х’, B’Y’, C’Z’. Теперь за период вектор повернется лишь на 180°, т. е. частота вращения магнитного поля оказывается равной половине частоты тока. Если число комплектов катушек статора (в комплект входит три катушки) обозначить через р, то частота вращения поля , где V — частота тока.

Таким образом, скорость вращения магнитного поля определяется числом катушек в обмотке статора, которое всегда кратно трем.

Принцип действия асинхронного электродвигателя

Вращающий момент двигателя создается силами взаимодействия вращающегося магнитного поля статора и токов, индуцируемых им в роторе.

Скорость вращения ротора электродвигателя не может достигнуть скорости вращения магнитного поля. Вращающий момент, действующий на ротор, определяется силой тока (или соответствующей ЭДС), индуцируемого в роторе. А индуцируемая в роторе ЭДС определяется скоростью вращения поля по отношению к скорости вращения ротора, который вращается в ту же сторону, что и поле. Значит, если бы ротор вращался с той же скоростью, что и поле, то он находился бы в покое относительно поля, и в нем не возникала бы ЭДС индукции. В роторе не было бы тока и не мог бы возникнуть вращающий момент. Отсюда ясно, что двигатель описываемого типа может работать только при частоте вращения ротора, несколько меньшей частоты вращения поля. Поэтому такие электродвигатели в технике принято называть асинхронными*.

Во время включения двигателя, когда ротор еще неподвижен, сила тока в нем значительно больше, чем при работе электродвигателя. Двигатель развивает в момент пуска довольно значительный вращающий момент, отчего частота вращения ротора нарастает и почти сравнивается с частотой вращения поля, и сила тока в роторе быстро уменьшается.

При изменении нагрузки электродвигателя (тормозного момента на валу) изменяется и вращающий момент. Например, при увеличении нагрузки возросший тормозной момент вызывает уменьшение скорости вращения ротора. При этом возрастает относительная скорость движения проводов ротора в магнитном поле, что приводит к увеличению ЭДС и токов в роторе, и, следовательно, вращающего момента. Благодаря этому асинхронный трехфазный электродвигатель сохраняет почти постоянной частоту вращения ротора при очень ихироких колебаниях нагрузки. Регулировать частоту вращения ротора в принципе невозможно.

Само собой разумеется, что при возрастании нагрузки двигателя, т. е. отдаваемой им механической мощности, должен возрастать не только ток в роторе, но и т,ок в ст,ато-ре. В соответствии с законом сохранения энергии двигатель должен получить от сети большую электрическую мощность. Здесь происходит такой же процесс, как и при работе нагруженного трансформатора (см. § 3.3). Детали этого процесса довольно сложны, и мы их рассматривать не будем.

* От греческого слова synchronos — одновременный или согласованный во времени, частица «а» означает отрицание.

Как работает электродвигатель [для чайников]

Сегодня электродвигатели всё чаще приходят на замену безнадежно устаревшим бензиновым агрегатам и используются как в современном транспорте, так и в многочисленных электронных устройствах. Примеры использования этих силовых агрегатов можно встретить повсюду. Вибровызов в телефоне осуществляется благодаря работе электродвигателя, современный электровелосипед тоже едет благодаря электродвигателю и даже “любимое” метро – всё это электродвигатели.

Читать еще:  Что делают при капремонте двигателя

Разновидностей электродвигателей сегодня существует огромное количество, но есть один важный фактор, который будет практически для всех них схожим. Речь идёт о физике работы этого типа устройств. Отметим, что далеко не все они будут использовать в своей работе описываемый далее принцип, но большая часть электродвигателей работают именно так. Как минимум, физический эффект, на котором всё это держится, сохраняется. Прежде, чем обсуждать подробно физику процесса, благодаря которому происходит вращение электродвигателя, рассмотрим сначала конструкцию простейшего двигателя.

Конструкция простейшего электродвигателя

Опять-таки, отметим, что рассматриваемая конструкция – это далеко не единственный вариант реализации подобных устройств. Однако, большая часть приборов работает именно так и среди бытовых приборов или в транспорте вы вряд ли обнаружите что-то другое. Поэтому, рассмотрим простейшую схему и элементарный вариант реализации прибора.

Конструкция самого простого электродвигателя является довольно примитивной. Он состоит из статора и ротора. Всё это убрано в корпус и подсоединяется проводами к источнику электрической энергии. Ещё есть подшипники, но это вещь сугубо механическая и нас сейчас не особенно интересует.

Части двигателя

Статор – это неподвижная часть. Преимущественно неподвижная часть представлена постоянными магнитами. Но бывает и обратный вариант, когда на статоре выполнена обмотка. Различие обусловлено тем, в сети какого типа работает двигатель – постоянного или переменного тока.

Ротор – это подвижная часть, которая, как правило является якорем, а на нем выполнена обмотка. К ротору подходят щётки, на которые подается электрический ток.

Щетки подключаются проводами к источнику питания. Именно они “передают электричество”. Но щетки есть не во всех конструкциях двигателей.

Вся конструкция смонтирована в корпус и в закрытом виде представляет собой готовый к работе силовой агрегат. Иногда на ротор двигателя ещё добавляется крыльчатка вентилятора, которая обеспечивает циркуляцию воздуха через агрегат и его дополнительное охлаждение. Так обычно монтируются двигатели постоянного тока.

На валу двигателя мы получаем крутящий момент, который прекрасно можно использовать для своих нужд. Например, передать его посредством зубчатой передачи на редуктор или использовать непосредственно для получения полезной работы (как в вентиляторе дома).

Женщина доила корову, а воде отражалось всё наоборот. Такое может быть и с конструкцией электродвигателя. Тогда намотка там будет на статоре, вместо ротора. Это уже будут двигатели переменного тока. Сам же ротор будет выполнен или из постоянных магнитов, или выглядеть как короткозамкнутая клетка (её ещё именуют беличье колесо).

Бывает также, что и статор, и ротор электродвигателя представляют собой обмотки. Тогда картина незначительно меняется. Правда смысл всё равно сохраняется прежним. Про принципы конструирования таких машин мы поговорим чуть позже.

Принцип работы любого электродвигателя

Физический принцип работы электродвигателя держится на свойствах рамки с током в магнитном поле. Самое простое объяснение эффекта будет поверхностным, но ясным. Вспомните, как ведут себя два магнита, которые мы сводим одноименными полюсами. Они отталкиваются! При некотором приближении, можно сказать, что это и есть физический принцип работы любого электродвигателя.

Тем или иным способом нам нужно создать два магнитных поля, которые оттолкнут друг друга. Если одно поле создать на крутящемся якоре, а второе на корпусе или статоре, то одно поле будет толкать другое, а движение будет превращаться в крутящий момент и получится двигатель. Дальше остается только поиграться с конструкцией. И таких конструкций известно много, но мы обсудим самые распространенные. Это двигатель постоянного тока и двигатель переменного тока. Последний вариант разделяют на синхронные и асинхронные.

Физический принцип работы электродвигателя постоянного тока

Если мы вспомним закон Ампера, то будет понятно, что на проводник с током в магнитном поле действует некоторая сила. Именно это обстоятельство позволяет получить вращающийся якорь.

Вспомним самый простой опыт, который показывают школьникам. Рамку с током помещают в магнитное поле и она начинает двигаться. Правда двигается она недолго, а скорее дергается. Всему виной несовпадение векторов. Размести мы магниты слегка иначе и получили бы постоянное движение.

Силы Ампера, действующие на боковые стороны рамки, будут создавать вращающий момент, величина которого пропорциональна магнитной индукции, силе тока в рамке, ее площади S и зависит от угла a между вектором магнитной индукции и нормалью к рамке.

Рамка с током в магнитном поле

В представленной ситуации рамка будет вращаться только тогда, когда вектора Fа будут не деформировать её, а придавать вращательное движение.

Вот так крутится рамка

Для этого в данном примере рамку нужно повернуть на 90 градусов. Теперь представим, что якорь нашего двигателя весь состоит из таких рамок, их очень много. Это улучшит процесс движения.

Вот и получился самый простой электрический двигатель постоянного тока.

Теперь представим, как будет выглядеть поведение такого двигателя при включении в цепь с переменным током. Он начнет танцевать в разные стороны. Ведь переменный электрический ток отличается тем, что регулярно меняет своё направление. Рамка с током, через которую он проходит, будет также менять направление своего движения. Крутиться равномерно такая штука не сможет. Поэтому, в переменных сетях используется двигатели переменного тока. Двигатель постоянного тока конечно же сможет работать в переменной сети, но для этого нужно использовать выпрямитель перед ним.

Правда бывают и универсальные электродвигатели, которые одинаково комфортно юзаются и там, и там. Но про это чуть позже.

Физический принцип работы электродвигателя переменного тока

Тут логика работы строится немного иначе. Обмотка у нас находится на статоре. А вот ротор представляет собой сердечник со специальной замкнутой рамкой или постоянными магнитами. Так проще обыграть постоянную смену направления тока.

Если двигатель переменного тока однофазный (или, правильнее сказать, может работать в нашей электрической цепи на 220 В) , то в обмотке статора при прохождении тока создается пульсирующее магнитное поле. Это поле раскладывается на два поля, имеющих равные амплитуды и вращающиеся в противоположные стороны с одинаковой частотой. Для разложения мы просто делаем замкнутый контур и получаем, что по одной части контура ток идёт в одну сторону, а по другой – в противоположную. Вот вам и момент, который крутанет рамку с током. А точнее – ротор определенной конструкции. Дальше обмотку статора “разносят” на 180 градусов и получают рабочую схему.

Поскольку полярность тока на статоре постоянно меняется, получается что генерируемое магнитное поле тоже меняет направление и регулярно, в соответствии с фазой колебания, “даёт пинок” нашему якорю. Этот процесс и порождает непрерывное равномерное движение ротора. Но есть тут один прикол!

Если двигатель однофазный, то прежде, чем он начнет работать, его ротор нужно крутануть. Или же магнитное поле так и будет пульсировать, а ротор так и будет стоять. Для этого обычно используется дополнительная обмотка или прочие ухищрения. Для создания вращающегося магнитного поля необходимо, чтобы магнитный поток через пусковую обмотку был сдвинут по фазе относительно рабочей. Но про это как-нибудь в другой раз.

Отметим, что этого недуга лишены трехфазные двигатели переменного тока. Там всё тоже самое, но поскольку у нас есть три разных фазы с разными точками максимальных значений относительно времени, в статоре создается вращающееся магнитное поле.

Оно начинает бегать по кругу, а заодно пинает ротор. Этот процесс и порождает непрерывное равномерное движение ротора. Тут уже не нужно никакое возбуждение, потому что ротор будет регулярно пинаться по кругу, как карусель, раскручиваемый детьми.

Читать еще:  Хорошее масло для турбированных бензиновых двигателей

Синхронный и асинхронный двигатели переменного тока

Двигатели переменного тока подразделяют на синхронные и асинхронные. Для постоянного тока это разделение не имеет особого смысла. Ведь там нет как такового понятия фаза и изменения направления тока.

Логика работы в обоих двигателях одинаковая. Но, судя по названию, в асинхронном что-то должно происходить ни в такт с основным процессом.

Синхронный и асинхронный двигатели отличаются преимущественно конструкцией ротора.

В роторе синхронного двигателя предусмотрена обмотка с независимой подачей напряжения или постоянные магнитики. Они толкают ротор относительно пульсирующего магнитного поля.

Ротор синхронного двигателя

У асинхронного ротора ток формируется с помощью магнитного статорного поля. В соответствии с законом электромагнитной индукции под действием прямого и обратного магнитных потоков в обмотке ротора станет действовать электродвижущая сила. Ротор похож по своей конструкции на колесо для грызуна. Но бывают и варианты с обмоткой, расположенной определенным образом.

Ротор асинхронного двигателя

В синхронном двигателе поля статора и ротора взаимодействуют друг с другом и имеют равную скорость. Ротор вращается в соответствии и точно в такт с полем статора. Частота вращения ротора синхронна частоте тока обмотки статора.

У асинхронных агрегатов имеет место разность магнитного поля роторного и статорного механизма на величину скольжения. Это то самое проскальзывание. Обороты асинхронного двигателя под нагрузкой всегда на величину скольжения отстают от вращения магнитного поля статора.

Не забываем, что обмотка ротора асинхронного двигателя, будь-то клетка или катушки под 120 градусов, является замкнутым контуром. В ней наводится ЭДС, а возникающий магнитный поток придает вращение ротору, отталкиваясь от пульсирующего магнитного поля статора. Движется эта кухня в направлении движения магнитного потока статора. Вращающий электромагнитный момент пытается уравнять скорости вращения магнитных полей статора и ротора, но это не всегда получается (а лучше сказать – никогда). Ведь уровнять эти моменты можно лишь в случае, если создавать поля одновременно, как в синхронном двигателе. Также влияет механическая нагрузка, которая подключена к валу ротора и мешает догнать поле. Но и в свободном состоянии эти цифры будут различаться. Ведь у любого механизма имеется некоторая инертность, а на время появления поля в замкнутой клетке (т.е. роторе асинхронного двигателя) тоже требуется время.

Вообщем-то, это основные вещи, которые вам следует уяснить. Всё остальное – это погружение в особенности конструкций конкретных агрегатов.

Мотор крутится в разные стороны

Тема раздела Электродвигатели, регуляторы, мотоустановки в категории Cамолёты — Электролеты; Всем привет. Собираю SkyFun Jet от HK. Мотор ему взял NTM Prop Drive 28-36 2200KV / 696W Регулятор сначала поставил .

Опции темы
  • Версия для печати
  • Отправить по электронной почте…
  • Подписаться на эту тему…

Мотор крутится в разные стороны

Всем привет. Собираю SkyFun Jet от HK.

Мотор ему взял NTM Prop Drive 28-36 2200KV / 696W

Регулятор сначала поставил от HiModel — FLY 30A proSB

Но 30А оказалось мало — когда резко давал много газа — ESC кратковременно отключался и приемник уходил в перезагрузку.

Тогда поставил ESC — Jeti Advance 77 pro opto — при первом запуске мотор крутился в обратную сторону (проверил 2 раза), тогда картой ProgCart поменял направление вращения.

Теперь дела такие — если газа дать чуть-чуть, мотор секунды 2-3 чуть дергается на месте, затем начинает вращение в любую сторону , если газа дать сразу чуть побольше, сразу начинает вращение в любую сторону. Может несколько раз в одну сторону начинать вращение, в очередной раз в обратную, может каждый раз в разные. Закономерности не видно. Первый раз с такой проблемой сталкиваюсь, даже на форуме не читал что такое бывает

На другом самолете, с которого снял Jeti все было отлично.

А если настройки сделать как было или сделать ресет регулятору и просто поменять местами любую пару проводов к мотору?

Как сделать ресет регулятору не знаю. Если бы изначально поменять 2 провода местами (не используя прогкарту) думаю проблем бы не было

Через прогкарту направление вращения задается не влево/вправо, а при вставленной фишке в определенное гнездо — меняется на противоположное.

Хочется понять — из-за чего впринципе такое поведение возможно?

при вставленной фишке в определенное гнездо — меняется на противоположное.

Хочется понять — из-за чего впринципе такое поведение возможно?

такое поведение характерно когда с таймингами что-то напутано. Поставьте для начала тайминг Auto. Потом попробуте другие тайминги, допускаю, что Вы их могли случайно сбить.
И фишку верните назад — как-то двусмысленно в инструкции на регулятор написано: When the shorting plug is inserted into this position, the controller only accepts the change of direction of motor rotation and ignores the other adjustments of the ProgCard.
. игнорирует другие настройки — это может быть как не влияет, так и игнорирует (чтобы там не установили), я так понял, в аглицком не силён.

Тайминг всегда был Авто, попробовал Высокий — изменений нет.

Вобщем поехал в поле, и вот что еще обнаружилось. Дома то я болше 20% газа не давал, а в поле дал — так обороты то двигателя больше от этого не делаются а когда стик доходит почти до 100% — мотор встает. А пока не встает, крутится на этих 20% вроде бы как то не уверенно.

Ну ладно думаю — попробую взлететь на 20% газа — и взлетел (перед запуском контроль направления вращения двигателя ), газ в полете не добавлял — летал низенько и тихонько. Приземлялся/падал в высокую траву. После 3-го падения в траву — готовлюсь к очередному взлету — даю газ, и чувствую что мотор как будто «просрался» и жарит на полную! уверенно и без срывов. Крутит каждый раз в правильную сторону. Погазовал я им на земле несколько раз — все четко.

Следующие полеты проходили «в полнеба» на приличной скорости.

У меня закралось подозрение, что проблема была из-за построннего мусора в моторе, и на первых 3-х полетах/посадках он вывалился из мотора. Возможно такое?

Асинхронный электродвигатель

Англоязычный справочник называет асинхронный электродвигатель индукционным. Сразу точки встают над i. Интернет забит вопросами отличий данного типа машин, нюансы коллекторных, синхронных движков, на деле выходит просто. Единственный вид двигателей, создающий полюсы явлением индукции. Прочие конструкции применяют постоянные магниты, катушки, питаемые током… Только в индукционных (асинхронных) двигателях используются наводки, создающие движущую силу. Фактор определяет особенность – отличие скорости вращения вала от частоты поля.

Устройство асинхронного двигателя

Статор асинхронного двигателя

Начнем простейшим распространенным вариантом: питание переменным током подается на обмотки статора. Посмотрите фото: типичный образчик статора. Вынув ротор, нельзя сказать, какому типу двигателей принадлежит сердечник, увитый медью. Получили главный вывод: статор не определяет методику формирования движущей силы. Скорее выступает опорой, относительно которой действует статор.

Видим составной сердечник, содержащий две катушки. Направление намотки создает два явных полюса. Нельзя назвать сгущения напряженности поля северным или южным, поскольку направление линий постоянно меняется (с удвоенной частотой сети 100 Гц). Сборка ведется следующим образом:

  1. Катушки мотают отдельно. Конструкторы знают, сколько витков нужно, каким проводом вести.
  2. Полученный моток надевают аккуратно на распорки магнитопровода (традиционной формы буквы Т). Для изоляции прокладывают слой винила, другого полимера.
  3. Затем концы обмоток чуть пригибают к периферии, витки плотно упираются в основание буквы Т.
  4. В нашем случае сердечник составной, внутренняя часть катушками вставлена во внешнее кольцо. Но чаще конструкция попроще.
Читать еще:  Давление впрыска форсунками дизельного двигателя

Сердечник собирается из пластин, изолированных друг от друга при помощи лака. Идет работа асинхронного электродвигателя на 230 вольт, переменное поле наводит вихревые токи, вызывая эффект перемагничивания. Чтобы снизить потери, сердечник разбивается на пластины. Специальная сталь, легированная добавками кремния обеспечивает низкий коэффициент электропроводности.

Статор электрического двигателя

В бытовых асинхронных электродвигателях полюсов статора два. Встречаются исключения из правила. На другом снимке видим статор асинхронного двигателя напольного вентилятора с тремя скоростями. Полюсов восемь, чтобы запитать такую кучу железа, понадобился конденсатор. Сдвигает фазу напряжения на минус 90 градусов относительно тока. Становится возможным создать переменное вращающееся поле внутри статора. Данный тип асинхронных двигателей называется конденсаторным.

Первым две фазы использовать предложил Никола Тесла.

Схема выглядит следующим образом:

  1. Четыре обмотки, лежащие в вершинах креста запитываются сетью 230 вольт. Две – противолежащие – имеют один знак полюса, прочие – другой. Получается, поле вращается с половинной скоростью сети (25 Гц). Этого хватает исправной работе вентилятора.
  2. Плавный пуск асинхронного электродвигателя и работы возможны только в условиях, когда поле сглажено. Для этих целей применяются четыре обмотки, лежащие по диагоналям. Здесь напряжение сдвинуто на 90 градусов. Использованием вспомогательных катушек технические характеристики улучшаются.

Как подстраиваются обороты? Регуляторы скорости асинхронного электродвигателя коммутируют обмотку. Клавиатура управления устроена в каждый момент времени допускать нажатие одной кнопки, либо никакой. Восемь обмоток имеют пару отводов. Статором производится нужная коммутация, некоторые ветви запитываются конденсатором. Нажатие каждой кнопки включает в работу часть обмотки. Полностью статор работает на высшей скорости.

Принцип работы схемы

Примерная схема, демонстрирующая принцип работы, иллюстрируется фото. Скорость вращения задается коммутацией обмоток кнопками 1, 2, 3. Необходимость защиты от одновременного включения диктуется требованиями к нормальной работе устройства. В результате реализуется простейшими методами управление по скорости.

Сердечник магнитопровода составлен листами электротехнической стали, снижающей потерь на нагрев. Температура может достигать значительных размеров, поэтому ротор асинхронного двигателя вентилятора снабжается лопастями (см. фото). Любой вентилятор реально может только разогревать воздух, никак не наоборот.

Роторы асинхронных двигателей

Ротор асинхронного двигателя

В данном случае двигатель обеспечит долговременную работу. Поэтому ротор снабжен лопастями тангенциального вентилятора. Помогает охладить конструкцию жаркими летними ночами. Хозяин может спокойно спать, игнорируя возможность пожара. Любой хороший прибор работает аналогичным образом (себя охлаждает). В данном случае двигатель сконструирован по схеме с короткозамкнутым ротором. На валу сидит барабан, где в силумин утоплены медные жилы. Закорочены друг на друга кольцевым соединителем. Подобное техническое решение в литературе традиционно называется беличьей клеткой (колесом) в силу очевидных причин.

Асинхронный короткозамкнутый электродвигатель является доминирующим в быту. Поля в проводниках наводятся статором, затем происходит сцепление через эфир, вал набирает обороты. Никогда не догонит частоту сети. Потому что индукционные токи обращаются в нуль, сцепление нарушается. Вал тормозит, снова подхватывается полем. Подобным образом действуют однофазные асинхронные электродвигатели, любые другие. В сущности, нет разницы, при помощи чего создается переменное поле.

Выделяют ещё одно большое семейство. Устройство асинхронного электродвигателя принципиально иное. Ротор снабжен обмотками, как коллекторный мотор. Обычно трехфазные. Это позволит навести гораздо более сильные поля, возникает крупная проблема: сложно стронуть с места вал. Огромная напряженность поля образует невероятной силы сцепление, за счет чего имеется возможность выхода оборудования из строя. Кроме того вал вообще так не раскрутится.

Вот поэтому для уменьшения силы наведенных токов (напряженности поля) в цепи всех фаз ротора врубается реостат. Активное сопротивление мешает ЭДС развить мощность на валу: некоторая доля рассеивается джоулевым теплом, формируемым активным сопротивлением. Стартовый момент асинхронного двигателя с фазным ротором достаточно велик, срыва оборотов не происходит. Понятно, что значение сопротивлений реостата для каждой конструкции свое. Определяют цифру ротор асинхронного электродвигателя, заданные характеристики, стартовая нагрузка.

Обратите внимание, что во всех случаях с асинхронными двигателями наблюдаем большие потери. Особенно хорошо видно на примере реостата. Мощность асинхронного электродвигателя напрямую тратится на рассеиваемое тепло. Главным достоинство рассматриваемого класса приборов все-таки считаются простота конструкции и обслуживания. В противном случае любые типы асинхронных электродвигателей заброшены бы были на помойку истории.

Как работает асинхронный двигатель

Статор создает вращающееся магнитное поле. Направление линий напряженности определяется правилом буравчика (правой руки). Поэтому статор пока отложим в сторону, попробуем понять, что параллельно происходит на роторе. Начнем беличьей клеткой.

Внутри статора находится поле, линии напряженности которого в первом приближении направлены к центру, где находится вал. Пересекают проводник беличьей клетки под углом близким 90 градусам. По правилу правой руки переменное поле индуцирует ЭДС, порождающую ток. В результате возникает ответ.

Любая пара проводников беличьей клетки обращается в рамку. Вокруг вращается поле статора. По правилу руки возникает ответное поле, направленное противоположно исходному:

  1. Ротор движется медленнее статора. Пусть вращение описывает часовую стрелку.
  2. В какой-то момент северный полюс начинает догонять один из проводников беличьей клетки.
  3. Ток направлен так, что круговые линии напряженности ответного магнитного поля идут навстречу полюсу.
  4. Получается, впереди по курсу полюс наталкивается на одноименный знак заряда, начинает толкать его. Позади образуется «юг», старающийся бежать вслед полю.

Простое краткое объяснение того, почему беличья клетка, в конце концов, начинает вращаться. Ротор не должен быть слишком тяжелым, сцепление полей не очень сильное. Это объясняет низкое тяговое усилие, развиваемое асинхронным двигателем на старте. Пусковой ток высок, поскольку ничто не препятствует генерации поля внутри статора. Обратите внимание: в роторе однофазного асинхронного двигателя, показанного на фото в начале статьи, проводники беличьей клетки чуть наклонены к оси барабана. Помогает создать более равномерный магнитный полюс, компенсируя недостатки (в первую очередь неравномерность) вращения поля статора.

Фазный ротор состоит из обмоток, нормаль которых направлена примерно на центр двигателя (вал). Можно каждую представить гипертрофированной ячейкой беличьей клетки. Витков много (в дрелях, к примеру, порядка 40), сила поля намного выше. За счет резкого скачка на старте потребляемая энергия стала бы слишком большой. Уровень ЭДС значителен (определен скоростью изменения магнитного потока). Цепь ротора дополняется реостатом, пытаются компенсировать недостаток. Активное сопротивление понижает ток, закономерно снижая ответное поле, генерируемое проводниками.

Фазный ротор может улучшить характеристики асинхронных электродвигателей, два-три проводника (грубо говоря) дают большее тяговое усилие. К минусам технического решения относят наличие токосъемников, щеточного аппарата. Для снижения износа в некоторых асинхронных двигателях после набора оборотов ротор закорачивается специальным механизмом. Намного продляется жизнь оборудования.

Не видим причин рассматривать подробнее фазный ротор, лучшей иллюстрацией послужит усиленная беличья клетка. Представьте себе: вместо одной стало сорок штук! Количество (от 40 и вниз) регулируется сопротивлением реостата.

Как задать обороты асинхронного двигателя

Любой, в том числе асинхронный трехфазный, электродвигатель неспособен развить обороты близкие частоте поля. Количество полюсов стремятся снизить. Но даже в этом случае редко удается достичь желанных 3000 об/мин (50 Гц х 60 сек). В принципе невозможно. Увеличение количества полюсов статора практикуется для понижения оборотов, как показано выше на примере напольного вентилятора.

Чаще практикуется подключение асинхронного электродвигателя с короткозамкнутым ротором на трехфазный регулятор амплитуды. Методика позволит максимально просто добиться результата. Токи асинхронных электродвигателей велики на старте, “благодаря” потерям сердечника ротора (с ростом оборотов снижаются). Нельзя сказать, что ремонт своими руками статоров относится к категории простых, но намного лучше, нежели перематывать ротор коллектора. Простотой конструкции объясняется любовь промышленности к этому роду устройств.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector