11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Высокочастотный ионный электроракетный двигатель что это

Высокочастотный ионный электроракетный двигатель что это

Научно-технический совет интегрированной структуры (НТС ИС) АО «НПО Энергомаш» рассмотрел перспективы создания электрических ракетных двигателей (ЭРД) повышенной мощности для решения транспортных задач в ближнем и дальнем космосе. Принято решение о подготовке совместной заявки АО «КБХА» (входит в ИС АО «НПО Энергомаш») и НИЦ «Курчатовский институт» в Фонд перспективных исследований на реализацию проекта безэлектродного плазменного ракетного двигателя (БПРД). Предварительно определены состав работ по созданию лабораторного образца БПРД и кооперация предприятий, необходимая для реализации проекта.

Проведенные предприятиями-участниками НТС ИС исследования различных типов ЭРД показали, что наиболее рациональным решением задачи создания электроракетного двигателя мощностью 100 кВт и более является разработка безэлектродного плазменного ракетного двигателя. БПРД обладает высокими характеристиками и позволяет обеспечить требуемый ресурс для освоения дальнего космоса.

Многочисленные варианты уже существующих ЭРД доказали свои положительные качества: высокий импульс (скорость истечения рабочего вещества) и малый массовый расход рабочего тела, что позволяет космическим аппаратам совершать полеты на большие расстояния. Однако имеющиеся недостатки ЭРД – малая тяга – накладывают определенные ограничения использования подобных двигательных установок – полеты на большие расстояния длятся очень долго. Сегодня ЭРД используются в качестве двигателей для корректировки орбит и ориентации небольших космических аппаратов. Обычно мощность таких двигателей не превышает нескольких десятков киловатт, обеспечиваемых на околоземных орбитах солнечными батареями.

Рассматриваемый в настоящее время вариант безэлектродного плазменного ракетного двигателя является новым поколением ЭРД. Это двигатель высокой мощности, рабочее вещество в котором находится в состоянии плазмы. Он обладает высокой энергетической эффективностью, возможностью использовать в качестве рабочего тела практически любое вещество, способен изменять величину удельного импульса, а максимальная мощность двигателя ограничивается практически только мощностью питания высокочастотного генератора. Также двигатель такого типа потенциально может иметь большой ресурс работы, поскольку снимаются все ограничения, связанные с воздействием энергонасыщенного рабочего вещества с элементами конструкции.

Реализация идей, заложенных в предлагаемую разработку, стала возможной благодаря прогрессу в исследовании плазменных процессов термоядерного синтеза, в развитии технологии высокотемпературных сверхпроводников и современной элементной базы высокочастотных генераторов. При создании такого двигателя разработчикам придется решить вопросы оптимизации плазменных процессов, разработки высокочастотного генератора, криогенных магнитных систем, а также систем питания и управления БПРД. Обеспечение решения этих задач потребует создания экспериментальной и испытательной стендовой базы.

НИЦ «Курчатовский институт» является основоположником работ по ЭРД в нашей стране. В институте имеется более чем полувековой опыт работ с различными типами плазменных ускорителей, включая безэлектродные, и значительный задел по сверхпроводящим магнитным системам. Работы по безэлектродным ускорителям различной мощности и сверхпроводящим магнитным системам активно ведутся в НИЦ «Курчатовский институт» в настоящее время.

Инициатором начала работ по БПРД в Интегрированной структуре АО «НПО Энергомаш» является АО «КБХА», которое начало заниматься ЭРД с 2010 года. Целью работ являлось создание магнитоплазмодинамического двигателя (МПДД) большой мощности. В качестве первого этапа был изготовлен демонстрационный образец МПДД мощностью до 10 кВт. Также совместно с Научно-исследовательским институтом прикладной механики и электродинамики Московского авиационного института выполнена еще одна работа по ЭРД — создан высокочастотный ионный двигатель мощностью 300 Вт.

электроракетные двигатели

ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ (электрореактивные двигатели, ЭРД)-космич. реактивные двигатели, в к-рых направленное движение реактивной струи создаётся за счёт электрич. энергии. Электроракетная двигательная установка (ЭРДУ) включает собственно ЭРД, систему подачи и хранения рабочего вещества и систему, преобразующую электрич. параметры источника электроэнергии к номинальным для ЭРД значениям и управляющую функционированием ЭРД. ЭРД — двигатели малой тяги, действующие в течение длит. времени (годы) на борту космич. летательного аппарата (КЛА) в условиях невесомости либо очень малых гравитац. полей. С помощью ЭРД параметры траектории полёта КЛА и его ориентация в пространстве могут поддерживаться с высокой степенью точности либо изменяться в заданном диапазоне. При эл—магн. либо эл—статич. ускорении скорость истечения реактивной струи в ЭРД значительно выше, чем в жидкостных или твердо-топливных ракетных двигателях; это даёт выигрыш в полезной нагрузке КЛА. Однако ЭРД требуют наличия источника электроэнергии, в то время как в обычных ракетных двигателях носителем энергии являются компоненты топлива (горючее и окислитель). В семейство ЭРД входят плазменные двигатели (ПД), эл—хим. двигатели (ЭХД) и ионные двигатели (ИД).

Электрохимические двигатели. В ЭХД электроэнергия используется для нагрева и хим. разложения рабочего вещества. ЭХД подразделяются на электронагревные (ЭНД), термокаталитические (ТКД) и гибридные (ГД) двигатели. В ЭНД рабочее вещество (водород, аммиак) нагревается электронагревателем и затем истекает со сверхзвуковой скоростью через сопло (рис. 1). В ТКД электроэнергией нагревается катализатор (до темп-ры

500 o C), химически разлагающий рабочее вещество (аммиак, гидразин); далее продукты разложения истекают через сопло. В ГД происходит сначала разложение рабочего вещества, потом подогрев продуктов разложения и их истечение. Конструкция ЭХД и используемые конструкц. материалы рассчитаны на включение на борту КЛА в течение 7-10 лет при числе запусков до 10 5 , длительности непрерывной работы

10-100 ч и отклонении тяговых характеристик от номинала не более 5-10%. Уровень потребляемой ЭХД электрич. мощности — десятки Вт, диапазон тяг — 0,01 -10 H. ЭХД имеют очень низкую для ЭРД энергетич. цену тяги

3 кВт/Н, большую скорость истечения струи (3 км/с) за счёт малого молекулярного веса рабочего вещества и продуктов его разложения. Гидразиновый ГД с тягой 0,44 H успешно работал на спутнике связи «Интел-сат-5»; аммиачный ЭНД с тягой 0,15 H входит в состав штатной ЭРДУ спутников серии «Метеор», к-рая корректирует орбиту и ориентацию спутника.

Рис. 1. Схема электронагревного двигателя: 1 -пористый электронагреватель; 2-тепловой экран; 3 — кожух; 4сопло.

Ионные двигатели. В ИД положит. ионы рабочего вещества ускоряются в эл—статич. поле. ИД (рис. 2) состоит из эмиттера ионов 4, ускоряющего электрода 5 с отверстиями (щелями), сквозь к-рые проходят ускоренные ионы, и внеш. электрода 6 (экрана), в роли к-рого обычно используют корпус ИД. Ускоряющий электрод находится под отрицат. потенциалом (

10 3 -10 4 B) относительно эмиттера. Электрич. ток и пространств. электрич. заряд реактивной струи должны быть нулевыми, поэтому выходящий ионный пучок нейтрализуется электронами, к-рые эмитирует нейтрализатор 7. Внеш. электрод находится под потенциалом, отрицательным относительно эмиттера и положительным относительно ускоряющего электрода; положит. смещение потенциала выбирается таким, чтобы сравнительно малоэнергичные электроны из нейтрализатора запирались электрич. полем и не попадали в ускоряющий промежуток между эмиттером и ускоряющим электродом. Энергия ускоренных ионов определяется разностью потенциалов между эмиттером и внеш. электродом. Наличие положит. пространств. заряда в ускоряющем промежутке ограничивает ионный ток из эмиттера. Осн. параметры ИД: скорость истечения, тяговый кпд, энергетич. цена тяги (Вт/Н), энергетич. цена иона (эВ/ион) — кол-во энергии, затрачиваемое на образование иона. Степень ионизации рабочего вещества в ИД должна быть как можно выше(>0,90,95).

Рис. 2. Схема ионного двигателя с объёмной ионизацией конструкции Г. Кауфмана: 1 — катод газоразрядной камеры; 2- анод; 3 -магнитная катушка; 4-эмитирующий электрод; 5 — ускоряющий электрод; 6 — внешний электрод; 7 — нейтрализатор.

В зависимости от типа эмиттера ИД подразделяются на двигатели с поверхностной ионизацией (ИДПИ), коллоидные двигатели (КД) и двигатели с объёмной ионизацией (ИДОИ). В ИДПИ ионизация происходит при пропускании паров рабочего вещества сквозь пористый эмиттер; энергия ионизации рабочего вещества должна быть меньше работы выхода материала эмиттера. Обычно выбирается пара цезий (рабочее вещество) — вольфрам (эмиттер). Эмиттер подогревается до темп-ры 1500 o K во избежание конденсации рабочего вещества. В КД (существуют только лаб. прототипы) рабочее вещество (20%-ный раствор йодистого калия в глицерине) распыляется через капилляры в виде положительно заряженных микрокапель в ускоряющий промежуток; электрич. заряд микрокапель возникает в процессе экстракции струек из капилляров в сильном электрич. поле и последующем их распаде на капли. Источником ионов в ИДОИ является газоразрядная камера (ГРК), в к-рой атомы рабочего вещества (паров металлов, инертных газов) ионизуются электронным ударом в газовом разряде низкого давления [разряд между электродами 1 и 2 (рис. 2) либо безэлектродный СВЧ-разряд]; ионы из плазмы ГРК вытягиваются в ускоряющий промежуток сквозь отверстия эмитирующего электрода-стенки ГРК, образующего вместе с ускоряющим электродом ионно-оптич. систему (ИОС) для ускорения и фокусировки ионов. Стенки ГРК, кроме эмитирующего электрода, магнитоизолированы от плазмы. ИДОИ — наиб. разработанные с инженерн. и физ. точек зрения ИД, их тяговый кпд

70%, подтверждённый в наземных испытаниях ресурс работы доведён до 2 · 10 4 ч. Ресурс работы ИД ограничивается эрозией ускоряющего электрода вследствие его катодного распыления вторичными ионами, возникающими в результате перезарядки быстрых ускоренных ионов на медленных нейтральных атомах рабочего вещества. Энергетич. цены тяги и иона в ИД (за исключением КД) весьма значительны (2·10 4 Вт/H, 250 эВ/ион). По этой причине ИД пока не используются в космосе в качестве рабочих ЭРД (ЭХД, ПД), хотя они неоднократно испытывались на борту КЛА. Наиб. значительно испытание по программе SERT-2 (1970, США); в состав ЭРДУ входили две ИДОИ конструкции Г. Кауфмана (рабочее тело — ртуть, потребляемая мощность 860 Вт, кпд 68%, тяга 0,03 H), проработавшие без отказа непрерывно 3800 ч и 2011 ч соответственно и возобновившие функционирование после длит. перерыва.

ПД по схеме плазменных ускорителей с замкнутым дрейфом электронов и протяжённой зоной ускорения систематически используется на КЛА, в особенности на геостационарных спутниках связи.

Лит.: Гильзин К. А., Электрические межпланетные корабли, 2 изд., M., 1970; Морозов А. И., Шубин А. П., Космические электрореактивные двигатели, M., 1975; Гришин С. Д., Лесков Л. В., Козлов H. П., Электрические ракетные двигатели, M., 1975.

Читать еще:  Что происходит когда перегрел двигатель

атмосферный ионный двигатель

Изобретение относится к электротехнике и может найти применение в качестве электродвигателя. Технический результат состоит в повышении мощности, уменьшении веса и пожароопасности. Атмосферный ионный двигатель содержит корпус, вал, электрический ионный насос, клеммовую коробку. Новым в двигателе является то, что корпус круглый и цилиндрический, а ротор выполнен заодно с валом в форме цилиндрического вала вращения, вставлен внутрь корпуса. Продольная ось ротора смещена вниз относительно продольной оси корпуса, закрытого передней и задней крышками, в отверстие одной из которых пропущен вал. Ротор имеет радиальные пазы, в которые вставлены подпружиненные лопасти. Впускная полость через воздушный фильтр соединена с атмосферой, а внутренняя полость двигателя соединена с корпусами нескольких электрических насосов, одинаковых по конструкции, оканчивающихся впускной трубой. Каждый электрический ионный насос имеет ионизатор атмосферного воздуха, ускоряющее устройство и нейтрализатор, выводы которых соединены с клеммами клеммовой коробки и подключены через коммутирующие устройства к ядерно-изотопным высоковольтным батареям. Рабочим телом двигателя является атмосферный воздух. 7 ил.

Формула изобретения

Атмосферный ионный двигатель, содержащий корпус, вал, электрический ионный насос, клеммовую коробку, отличающийся тем, что корпус изготовлен круглым и цилиндрическим, а ротор выполнен заодно с валом в форме цилиндрического тела вращения, имеющего радиальные пазы, в которые вставлены пустотелые лопасти с размещенными внутри пружинами, причем ротор вставлен внутрь круглого цилиндрического корпуса, закрытого передней и задней крышками, в отверстие одной из которых пропущен вал, продольная ось которого смещена вниз относительно продольной оси корпуса таким образом, что наружная поверхность ротора контактирует с внутренней поверхностью корпуса, кроме того впускная полость двигателя соединена через воздушный ультразвуковой фильтр с атмосферой, а выпускная полость двигателя соединена с корпусами нескольких электрических ионных насосов, одинаковых по конструкции, оканчивающихся выпускной трубой, причем каждый электрический ионный насос включает в себя ионизатор атмосферного воздуха, ускоряющее устройство и нейтрализатор, выводы которых соединены с клеммами клеммовой коробки, причем ядерно-изотопные высоковольтные батареи через коммутирующие устройства подключены к клеммам клеммовой коробки, причем рабочим телом двигателя является атмосферный воздух.

Описание изобретения к патенту

Настоящее изобретение относится к области электротехники и может найти применение в качестве электродвигателя на транспорте и на небольших стационарных и передвижных электростанциях.

Известен электродвигатель постоянного тока, содержащий корпус с опорной плитой, закрытый крышками, через отверстие одной из которых пропущен вал, клеммовую коробку. Ротор выполнен в форме цилиндрического тела, изготовленного заодно с валом и имеющего радиальные пазы. В пазы вставлены лопасти, имеющие штыри, входящие в профилированный паз, выполненный на внутренней поверхности задней крышки корпуса, имеющего в нижней части отверстие, в котором размещен генератор водорода. Он представляет собой трубу, закрытую с обеих сторон крышками с решетками, заполненную кристаллами палладия или другого металла, способного поглощать и выделять водород при охлаждении и нагревании. На изолированную наружную поверхность трубы надеты нагреватели-охладители, соединенные друг с другом последовательно таким образом, что при любом направлении электрического тока одна половина трубы охлаждается, а другая нагревается. Каждый нагреватель-охладитель представляет собой два кольца, соединенные друг с другом боковыми поверхностями и выполненные один из металла, другой из полупроводника и подключенные к клеммам клеммовой коробки. Генератор водорода пневматически соединен с впускной и выпускной полостями двигателя. Кристаллы палладия насыщены, а внутренние полости электродвигателя заполнены водородом, который является рабочим телом. /Патент РФ № 2158465, кл. H02K 57/00, F01B 29/00, опубликован 27.10.2000, Бюл. № 30/.

Недостатками известного электродвигателя являются: недостаточная мощность, высокая пожарная опасность, высокая стоимость генератора водорода.

Указанные недостатки обусловлены конструкцией электродвигателя.

Известен также газотурбоионный двигатель, содержащий круглый корпус, газовые турбины, пусковой электродвигатель, понижающий редуктор. Газовые турбины изолированы друг от друга и закреплены на одном валу, один конец которого соединен с валом пускового электродвигателя, а другой связан с ведущей шестерней понижающего редуктора. Турбины соединены между собой трубопроводом, имеющим снаружи охладитель, а внутри электрический ионный насос, состоящий из ионизатора, ускоряющей системы и нейтрализатора. Внутренняя полость двигателя заполнена водородом под давлением, которой является рабочим телом. Электрический ионный насос подключен к ядерно-изотопным батареям, каждая из которых содержит металлический корпус, из которого выкачан воздух, внутри которого размещен эмиттер, выполненный из металла, содержащего изотопы радиоактивного металла — и -эмиссии. Эмиттер имеет вывод, изолированный от корпуса, а вторым выводом является сам корпус. /Патент РФ № 2184256, кл. F02C 6/20, опубликован 27.06.2002, Бюл. № 18/.

Известный газотурбоионный двигатель как наиболее близкий по технической сущности и достигаемому полезному результату принят за прототип.

Недостатками известного газотрубоионного двигателя, принятого за прототип, являются: недостаточная мощность, большой вес, высокая пожароопасность.

Указанные недостатки обусловлены конструкцией газотурбоионного двигателя.

Целью настоящего изобретения является повышение технических и эксплуатационных характеристик электродвигателя.

Указанная цель согласно изобретения обеспечивается тем, что газовые турбины, пусковой электродвигатель и понижающий редуктор замещены ротором, выполненным заодно с валом в форме цилиндрического тела вращения, имеющего радиальные пазы, в которые вставлены пустотелые лопасти с размещенными внутри пружинами, причем ротор вставлен внутрь круглого цилиндрического корпуса, закрытого передней и задней крышками, в отверстие одной из которых пропущен вал, продольная ось которого смещена вниз относительно продольной оси корпуса таким образом, что наружная поверхность ротора контактирует с внутренней поверхностью корпуса, кроме того, впускная полость двигателя соединена через воздушный ультразвуковой фильтр с атмосферой, а выпускная полость двигателя соединена с корпусами нескольких электрических ионных насосов, одинаковых по конструкции, оканчивающихся выпускной трубой, причем каждый электрический ионный насос включает в себя ионизатор атмосферного воздуха, ускоряющее устройство и нейтрализатор, выводы которых соединены с клеммами клеммовой коробки, причем ядерно-изотопные высоковольтные батареи через коммутирующие устройства подключены к клеммам клеммовой коробки, причем рабочим телом двигателя является атмосферный воздух.

Сущность изобретения поясняется чертежами, где на фиг.1 изображен общий вид атмосферного ионного двигателя, на фиг.2 — вид на атмосферный ионный двигатель спереди, на фиг.3 — вид на атмосферный ионный двигатель сверху, на фиг.4 — устройство воздушного ультразвукового фильтра, на фиг.5 — вид на атмосферный ионный двигатель спереди в разрезе, на фиг.6 — схема принципа действия атмосферного ионного двигателя, на фиг.7 — устройство ядерно-изотопной высоковольтной батареи.

Атмосферный ионный двигатель содержит круглый цилиндрический корпус 1 с опорной плитой 2, закрытой передней 3 и задней 4 крышками. В отверстие передней крышки пропущен вал 5, выполненный заодно с ротором 6 в форме цилиндрического тела вращения, вставленным внутрь круглого цилиндрического корпуса, продольная ось которого смещена вниз относительно продольной оси круглого цилиндрического корпуса таким образом, что наружная поверхность ротора контактирует с внутренней поверхностью круглого цилиндрического корпуса. На роторе выполнены радиальные пазы, в которые вставлены пустотелые лопасти 7, внутрь каждой из которых вставлена пружина 8. Впускная полость 9 закрыта боковой крышкой 10, соединенной с впускной трубой 11, оканчивающейся воздушным ультразвуковым фильтром 12. Он содержит цилиндрический корпус 13 с внутренней перегородкой 14, закрытой сверху крышкой 15, установленной на кронштейнах 16 с образованием впускных окон 17, а в нижней части имеющий съемный конический пылесборник 18. В нижней части внутренняя перегородка соединена с излучателем ультразвука 19, который электрически соединен с генератором ультразвука 20, закрепленного на цилиндрическом корпусе фильтра, и источником тока, не показанным на чертеже. Круглый цилиндрический корпус выполнен заодно с корпусами 21 нескольких электрических ионных насосов, одинаковых по конструкции, внутренняя полость которых выложена изоляционной керамикой 22, закрытых боковыми крышками 23, соединенными с общей выпускной трубой 24. Внутри каждый электрический ионный насос содержит ионизационную камеру 25, пневматически соединенную с выпускной полостью 26, источник электронов 27, ускоряющий электрод 28, разделительную сетку 29, соленоид закрутки 30, вмонтированный в изоляционную керамику, замедляющий электрод 31 и нейтрализатор 32. /О реактивных двигателях, работающих по принципу электрического ионного насоса см. Н.Н.Боброва, Э.Ф.Богданов, Ю.А.Бочаров и др. — Машиностроение, Терминологический словарь под общей редакцией М.К.Ускова и Э.Ф.Богданова. М.: Машиностроение, 1995, с.151, рис.13и (б)/. Все электроды электрических ионных насосов через коммутирующие устройства 44 подключены к высоковольтным ядерно-изотопным батареям 34, каждая из которых содержит металлический герметично закрытый корпус 35, из которого выкачан воздух, являющийся одним из выводов батареи. Внутри корпуса размещен эмиттер 36, выполненный из металла, содержащего соли радиоактивного элемента — или -эмиссии, например стронция (Sr 90 ). Эмиттер имеет выведенный наружу вывод, изолированный из корпуса. Напряжение батареи 360000 вольт. /В.Фильштих, Топливные элементы. Пер. с нем. С.К.Бычковского, Ю.А.Мазитова и др., проф. В.С.Багоцкого. М.: Мир, 1968, с.339, рис.7.2/.

Рабочим телом двигателя является атмосферный воздух.

Работа атмосферного ионного двигателя.

После включения ядерно-изотопных батарей 34 посредством коммутирующего устройства 33 в ионизационной камере 25 происходит ударная объемная ионизация атмосферного воздуха и источник электронов 27 создает облако быстро движущихся электронов, которые перемешиваются в объеме соленоидом закрутки 30 и ионизируют атомы атмосферного воздуха. В результате образуются ионы воздуха, которые под действием электрического поля начинают с большой скоростью двигаться в направлении разделительной сетки 23. Далее они проходят через замедляющий электрод 31, где скорость их уменьшается, а достигнув нейтрализатора, 32 ионы воздуха превращаются в нейтральные атомы, продолжая по инерции движение в сторону выпускной трубы 24, подталкиваемые следующей порцией движущихся ионов (Фиг.6). В результате этого в выпускной полости 26 происходит сильное разрежение. Атмосферный воздух начинает давить с силой на полость 7 со стороны впускной полости 9, поворачивая ротор 6 вместе с валом 5. При этом в выпускную полость 26 поступает свежая порция атмосферного воздуха, которая находилась между лопастями 7, и все повторяется сначала. Таким образом происходит непрерывное вращение вала 5 и перемещение атмосферного воздуха из впускной полости 9 в выпускную полость 26.

Читать еще:  График с характеристиками двигателей ваз

Перед тем как попасть во впускную полость 9, атмосферный воздух проходит очистку в воздушном ультразвуковом фильтре следующим образом. Через окна 17 атмосферный воздух поступает в правый канал (фг.4) и движется в направлении, показанном стрелками. Достигнув нижней части, он попадает в область действия ультразвукового излучателя 19, питаемого от генератора ультразвука 20. Под действием ультразвука частицы пыли ударяются друг от друга, слипаются в более крупные частицы и при движении по круговой траектории в нижней части корпуса 13 под действием центробежной силы отбрасываются вниз на конусное дно, а чистый атмосферный воздух поднимается верх. Накопившаяся пыль по мере необходимости удаляется через съемную крышку 18. Регулирование частоты вращения вала 5 двигателя осуществляется путем подключения или отключения одного-двух электрических ионных насосов. Чем больше электрических ионных насосов работает, тем больше разрежение в выпускной полости 26 и тем больше сила давления на лопасти 7 и соответственно больше мощность на валу 5, вращение которого осуществляется только в одну сторону. Для остановки атмосферного ионного давления необходимо постепенно или сразу отключить коммутирующими устройствами 33 ядерно-изотопные батареи 34. Ударная объемная ионизация прекратится и двигатель остановится.

Предлагаемый атмосферный ионный двигатель может быть использован на транспорте, а также для привода генератора электрического тока на передвижных электростанциях или в жилых домах, дачах, коттеджах в качестве автономного источника тока.

Положительный эффект: более высокая мощность на валу, более высокая пожаробезопасность, расширенная область применения.

Ракетные двигатели

Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.

Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива. Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива. Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.

Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.

Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

Виды химических двигателей

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Плюсы и минусы химических РД, их сфера применения

Достоинствами твердотопливных РД являются:
  • простота конструкции;
  • сравнительная безопасность в плане экологии;
  • невысокая цена;
  • надежность.
Недостатки РДТТ:
  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:
  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.
Недостатки ЖРД:
  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Читать еще:  Датчик температуры двигателя фольксваген тигуан

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Преимущества и недостатки ЭРД, сфера использования

Среди преимуществ ЭРД:
  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).
Недостатки:
  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

Высокочастотный ионный электроракетный двигатель что это

Этот обширный класс двигателей объединяет различные типы двигателей, которые очень интенсивно разрабатываются в настоящее время. Разгон рабочего тела до определенной скорости истечения производится за счет электрической энергии. Энергия получается от атомной или солнечной электростанции, находящейся на борту космического корабля (в принципе даже от химической батареи). Мыслимы многочисленные типы бортовых энергетических установок [1.8, 1.9, 1.18].

Схемы разрабатываемых электрических двигателей чрезвычайно разнообразны. Мы рассмотрим три основные группы электрических двигателей [1.8, 1.9, 1.18], различающиеся по способу, с помощью которого происходит выброс рабочего тела из ракеты. (Возможны, однако, и иные способы классификации электрических двигателей

Электротермические двигатели. Эти двигатели, как и все рассматривавшиеся нами до сих пор, относятся к тепловым. Нагретое до высокой температуры рабочее тело (водород) превращается в плазму — электрически нейтральную смесь

положительных ионов и электронов. Методы электрического нагрева могут быть различны: нагрев в электрической дуге (рис. 10), с помощью вольфрамовых нагревательных элементов, посредством электрического разряда и другие

Рис. 10. Схема электродугового двигателя

При лабораторных испытаниях электродуговых двигателей достигнута скорость истечения порядка Если удастся осуществить магнитную изоляцию плазмы от стенок тяговой камеры, температура плазмы сможет быть очень высока и скорость истечения доведена до Реактивные ускорения в электротермических двигателях будут порядка [1.13, 1.19, 1.20].

Первый в мире электротермический двигатель был разработан в 1929-1933 гг. в Советском Союзе под] руководством В. П. Глушко в знаменитой Газодинамической лаборатории [1.18, 1.28].

Электростатические (ионные) двигатели [1.8, 1.9, 1.18-1.20, 1.26, 1.27, 1.29]. В этих двигателях мы впервые сталкиваемся с разгоном рабочего тела «холодным» путем. Частицы рабочего тела (пары легко ионизуемых металлов, например рубидия или цезия) теряют свои электроны в ионизаторе и разгоняются до большой скорости в электрическом поле. Чтобы электрический заряд струи заряженных частиц позади аппарата не препятствовал дальнейшему истечению, эта струя нейтрализуется вне его выбрасыванием отнятых у атомов электронов (рис. 11).

Рис. 11. Принципиальная схема ноьного двигателя [1, 27]

В ионном двигателе не существует температурных ограничений. Поэтому в принципе возможно достижение сколь угодно больших скоростей истечения, вплоть до приближающихся к скорости света [1.9]. Однако слишком высокие скорости истечения приходится исключить из рассмотрения, так как они потребовали бы огромной мощности электростанции на борту корабля.

Рис. 12. Схема образования движущихся плазмоидов в «импульсном» плазменном двигателе 11.18].

При этом масса двигательной установки возросла бы гораздо сильнее, чем тяга, и в результате сильно бы снизилось реактивное ускорение. Цель космического полета, его продолжительность, качество энергетической установки определяют наилучшую, оптимальную для уданной задачи скорость истечения. Она находится, по мнению одних авторов, в пределах [1.29], по мнению других, [1.20], [1.13]. Ионные двигатели будут способны сообщить реактивное ускорение порядка [1.20].

Большие надежды возлагаются некоторыми специалистами на особый тип электростатических двигателей — коллоидные двигатели. В этих двигателях ускоряются большие заряженные молекулы и даже группы молекул или пылинки диаметром около 1 микрона [1.29].

Рис. 13. Схема магнитогидродинамического двигателя со скрещенными полями.

Магнитогидродинамические (электродинамические, электромагнитные, магнит -плазменные, «плазменные») двигатли [1.8, 1.9, 1.18-1.20, 1.26, 1.27]. Эта группа двигателей объединяет огромное разнообразие схем, в которых плазма разгоняется до некоторой скорости истечения изменением магнитного поля или взаимодействием электрического и магнитного полей. Конкретные методы разгона плазмы, а также ее получения весьма различны. В плазменном двигателе (рис. 12) сгусток плазмы («плазмоид») разгоняется магнитным давлением [1.8, 1.19]. В «двигателе со скрещенными электрическим и магнитным полями» (рис. 13) через плазму,

помещенную в магнитное поле, пропускается электрический ток (плазма — хороший проводник), и в результате плазма приобретает скорость (подобно проволочной рамке с током, помещенной в магнитном поле) [1.9, 1.18]. Оптимальная скорость истечения для магнитогидродинамических двигателей, вероятно, будет порядка при реактивном ускорении

В лабораторных испытаниях магнитогидродинамических двигателей достигнуты скорости истечения до [1.9].

Следует отметить, что во многих случаях отнести двигатель к тому или иному классу бывает затруднительно.

Электрические двигатели с забором рабочего тела из верхней атмосферы [1.9]. Летательный аппарат, движущийся в верхних слоях атмосферы, может использовать разреженную внешнюю среду в качестве рабочего тела для электрического двигателя. Подобный электрический двигатель аналогичен воздушно-реактивному двигателю в классе химических двигателей. Поступающий через воздухозаборник газ может использоваться в качестве рабочего тела или непосредственно, или после накопления (и, возможно, сжижения) его в баках. Возможен также вариант, при котором в баках одного летательного аппарата будет накапливаться рабочее тело и перекачиваться затем в баки другого аппарата.

Важным преимуществом всех типов электрических двигателей является простота регулировки тяги. Серьезной трудностью — необходимость освобождения от избытка тепла, выделяемого ядерным реактором. Этот избыток не уносится рабочим телом и не отдается окружающей среде, которая практически отсутствует в мировом пространстве. Освободиться от него можно лишь с помощью радиаторов, имеющих большую поверхность.

В 1964 г. в США было проведено первое успешное испытание в течение 31 мин ионного двигателя, установленного на контейнере, запущенном на баллистическую траекторию. В реальных условиях космоса ионные и плазменные двигатели быливпервые испытаны на советском корабле «Восход-1» и советской станции «Зонд-2», запущенных в 1964 г. («Зонд-2» — всторону Марса) [1.28]; наряду с обычными они использовались в системах ориентации. В апреле 1965 г. ионный двигатель на жидком цезии испытывался вместе с ядерным реактором «Снеп-10А» на американском спутнике Земли, развивая тягу (вместо Цезиевые ионные двигатели с расчетной регулируемой тягой и электротермические двигатели, использующие в качестве рабочего тела жидкий аммиак и развивающие тягу до испытывались с переменным успехом на спутниках серии запускавшихся в США с 1966 г.

В 1966-1971 гг. в СССР проводились эксперименты по программе «Янтарь». 4 ионосферных лаборатории запускались на высоту до по баллистическим траекториям, причем испытывались

плазменно-ионные двигатели на аргоне азоте воздухе скобках указаны скорости истечения.)

В 1970 г. были испытаны на орбите по американской программе «Серт-2» два ртутных ионных двигателя, каждый с максимальной тягой удельным импульсом 4240 с (см. § 8 гл. 5). Двигатели отказали, проработав один более а другой более из-за эрозии электродов.

В феврале 1972 г. были проведены на одном из спутников серии «Метеор» успешные испытания двух советских стационарных плазменных двигателей принципиально новой схемы, тяги которых составляли около

С 1974 г. ЭРД разного типа успешно служат на американских спутниках серий «Интелсат» и др.

Во всех случаях энергия черпается от солнечных батарей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector